Prediksi Pasien Covid-19 yang Meninggal di Jawa Timur Menggunakan Metode Regresi Spline Truncated

Authors

  • Qurrotul Aini Universitas Islam Madura
  • Tony Yulianto Universitas Islam Madura
  • Faisol Faisol Universitas Islam Madura

DOI:

https://doi.org/10.31102/zeta.2022.7.2.79-83

Keywords:

COVID-19, Spline Truncated Regression, Positive Patients, Cured Patients, Deceased Patients

Abstract

Corona Virus Disease 2019 (COVID-19) was first discovered at the end of 2019 in Wuhan, China.  The virus attacks the respiratory system with pneumonia-like symptoms. This virus is classified as a new virus so it does not have an antidote and has spread throughout the world until it is out of control. There are more than 200 countries reporting covid-19 cases including Indonesia. Because the biggest effect of COVID-19 is death, so researchers need to predict whether the mortality rate of COVID-19 patients. One method for predicting covid-19 patients who died in East Java is using the spline truncated regression method. Spline regression is a regression analysis that is able to estimate data that does not have a specific pattern and has a tendency to seek data estimates fro, the formed pattern on its own, while truncated is a function that can be interpreted as a function of slice. And produces a GCV value of 51.0167, a MAPE value 47.0096, MSE 32.9825, and R-Sq 0.9998. Based on the MAPE value, the prediction model is said to be still reasonable.

Downloads

Download data is not yet available.

References

Albana, A. S., & Azhari, S. (2020). Prediksi Penyebaran COVID-19 Kota Surabaya Dengan Simulasi Monte Carlo. Journal of Advances in Information and Industrial Technology, 2(1), 36-42.
Fadhillah, K. N., Suparti, , & Tarno, . (2016). Pemodelan Regresi Spline Truncated Untuk Data Longitudinal. Jurnal Gaussian, 5(3), 447-454.
Ginting, F., Buulolo, E., & Siagian, E. R. (2019). Implementasi Algoritma Regresi Linear Sederhana Dalam Memprediksi Besaran Pendapatan Daerah (Studi Kasus: Dinas Pendapatan Kab. Deli Serdang). Konferensi Nasional Teknologi Informasi dan Komputer, 3(1), 274-279.
Handayani, D., Hadi, D. R., Isbaniah, F., Burhan, E., & Agustin, H. (2020). Penyakit virus Corona 2019. Jurnal Respirologi Indonesia, 40(2), 119-129.
Ilpaj, S. M., & Nurwati, N. (2020). Analisis Pengaruh Tingkat Kematian Akibat Covid-19 Terhadap Kesehatan Mental Masyarakat Di Indonesia. Jurnal Pekerjaan Sosial, 3(1), 16-28.
Katemba, P., & Djoh, R. K. (2017). Prediksi Tingkat Produksi Kopi Menggunakan Regresi Linear. Jurnal Ilmiah Flash, 3(1), 42-51.
Riskiyah, S. (2017). Penerapan Regresi Nonparametrik Spline Truncated Untuk Mengetahui Faktor-faktor yang Mempengaruhi Hasil Tangkapan Ikan Nelayan di Kabupaten Pamekasan. Pamekasan: Universitas Islam Madura.
Rory, . (2016). Regresi Campuran Nonparametrik Spline Linear Truncated dan Fungsi Kernel Untuk Pemodelan Data Kemiskinan di Provinsi Papua. Surabaya.
Widodo, E., & Irmayanti, A. N. (2019). Perbandingan Metode Regresi Spline Truncated dengan Regresi Linear Sederhana untuk Kasus Harga Saham Perusahaan Pertambangan di Indonesia. Eksakta, 19(02), 143-53.
Yuliawati, K., & Djannah, S. N. (2020). Bagaimana Pengetahuan, Sikap Dan Perilaku Masyarakat Tentang Konsumsi Multivitamin/Suplemen selama Pandemi Covid-19. Jurnal Kesehatan Masyarakat Khatulistiwa, 7(3), 123-134.
Zahrah, M. . (2020). Prediksi Tingkat Hunian Hotel di Kabupaten Pamekasan Berdasarkan Estimator Deret Fourier Dengan dan Tanpa tren. Universitas Islam Madura.

Downloads

Published

2022-11-28

How to Cite

Aini, Q., Yulianto, T., & Faisol, F. (2022). Prediksi Pasien Covid-19 yang Meninggal di Jawa Timur Menggunakan Metode Regresi Spline Truncated. Zeta - Math Journal, 7(2), 79–83. https://doi.org/10.31102/zeta.2022.7.2.79-83

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>