Gas-to-feed revolution: a novel review of the microbial conversion of industrial emissions into sustainable livestock feed

Authors

DOI:

https://doi.org/10.31102/eam.2.2.104-121

Keywords:

Circular bioeconomy, Gas fermentation, Microbial bioconversion, Single-cell protein (SCP), Sustainable livestock

Abstract

The livestock sector is a major contributor to greenhouse gas emissions, especially through feed production and processing. As demand for animal products increases, the need for sustainable alternatives becomes more urgent. This review explores how the circular bioeconomy (CBE) can reduce environmental impact by using industrial waste gases, such as CO₂, CO, and CH₄, as carbon sources for microbial bioconversion. The review discusses key microbial platforms, including autotrophic bacteria, methanotrophs, and hydrogen-oxidizing bacteria, for their ability to convert gases into biofuels and single-cell protein (SCP). These alternatives offer a more ecofriendly approach to conventional livestock feed. The review also highlights successful industrial applications, safety and regulatory challenges, and emerging biotechnological innovations, such as synthetic biology and co-culture systems. Ultimately, integrating the CBE into livestock systems provides a way to achieve more sustainable, resilient, and efficient food production.

References

Aiassa, E., Higgins, J. P. T., Frampton, G. K., Greiner, M., Afonso, A., Amzal, B., Deeks, J., Dorne, J.-L., Glanville, J., & Lövei, G. L. (2015). Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety. Critical Reviews in Food Science and Nutrition, 55(7), 1026–1034.

Allaart, M. T., Diender, M., Sousa, D. Z., & Kleerebezem, R. (2023). Overflow metabolism at the thermodynamic limit of life: How carboxydotrophic acetogens mitigate carbon monoxide toxicity. Microbial Biotechnology, 16(4), 697–705.

Altin, N., & Akay, R. G. (2024). Components used in microbial fuel cells for renewable energy generation: a review of their historical and ecological development. Journal of Electrochemical Energy Conversion and Storage, 21(2), 20801.

Aydin, G., & Karakurt, I. (2024). Methane emission from coalbed. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion (pp. 3–30). Elsevier.

Bae, J., Jin, S., Kang, S., Cho, B.-K., & Oh, M.-K. (2022). Recent progress in the engineering of C1-utilizing microbes. Current Opinion in Biotechnology, 78, 102836.

Bardhan, P., Gupta, K., & Mandal, M. (2019). Microbes as bio-resource for sustainable production of biofuels and other bioenergy products. In New and future developments in microbial biotechnology and bioengineering (pp. 205–222). Elsevier.

Baumschabl, M., Ata, Ö., & Mattanovich, D. (2024). Single carbon metabolism–A new paradigm for microbial bioprocesses? Synthetic and Systems Biotechnology, 9(2), 322–329.

Bhat, E. H., Henard, J. M., Lee, S. A., McHalffey, D., Ravulapati, M. S., Rogers, E. V, Yu, L., Skiles, D., & Henard, C. A. (2024). Construction of a broad-host-range Anderson promoter series and particulate methane monooxygenase promoter variants expand the methanotroph genetic toolbox. Synthetic and Systems Biotechnology, 9(2), 250–258.

Bouxin, A. (2023). Management of safety in the feed chain. In Food Safety Management (pp. 19–35). Elsevier.

Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: A potential substitute in human and animal nutrition. Sustainability, 13(16), 9284.

Chen, J., Daniell, J., Griffin, D., Li, X., & Henson, M. A. (2018). Experimental testing of a spatiotemporal metabolic model for carbon monoxide fermentation with Clostridium autoethanogenum. Biochemical Engineering Journal, 129, 64–73.

Davin, M. E., Thompson, R. A., Giannone, R. J., Mendelson, L. W., Carper, D. L., Martin, M. Z., Martin, M. E., Engle, N. L., Tschaplinski, T. J., & Brown, S. D. (2024). Clostridium autoethanogenum alters cofactor synthesis, redox metabolism, and lysine-acetylation in response to elevated H2: CO feedstock ratios for enhancing carbon capture efficiency. Biotechnology for Biofuels and Bioproducts, 17(1), 119.

De Jonge, J., Frewer, L., Van Trijp, H., Jan Renes, R., De Wit, W., & Timmers, J. (2004). Monitoring consumer confidence in food safety: an exploratory study. British Food Journal, 106(10–11), 837–849.

Domenech, T., & Bahn-Walkowiak, B. (2019). Transition towards a resource efficient circular economy in Europe: policy lessons from the EU and the member states. Ecological Economics, 155, 7–19.

El-Nemr, A. (2011). Environmental pollution and its relation to climate change.

Engel, D., Hoffmann, M., Kosfeld, U., & Mann, M. (2025). Online monitoring of methane transfer rates unveils nitrogen fixation dynamics in Methylococcus capsulatus. Biotechnology and Bioengineering, 122(1), 110–122.

Fasihi, M., Jouzi, F., Tervasmäki, P., Vainikka, P., & Breyer, C. (2025). Global potential of sustainable single-cell protein based on variable renewable electricity. Nature Communications, 16(1), 1496.

Federici, F., Orsi, E., & Nikel, P. I. (2023). From rags to riches: exploiting the calvin‐benson‐bassham cycle for biomanufacturing. ChemCatChem, 15(23), e202300746.

Fu, J., Zhou, Q., Zou, R., & Zhang, D. (2021). Mitigation & Adaptation—China’s Evolving Policy Framework. In Climate Mitigation and Adaptation in China: Policy, Technology and Market (pp. 3–33). Springer.

Gao, Z., Guo, S., Chen, Y., Chen, H., Fu, R., Song, Q., Li, S., Lou, W., Fan, D., & Li, Y. (2024). A novel nutritional induction strategy flexibly switching the biosynthesis of food-like products from methane by a methanotrophic bacterium. Green Chemistry, 26(12), 7048–7058.

Garg, S., Wu, H., Clomburg, J. M., & Bennett, G. N. (2018). Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metabolic Engineering, 48, 175–183.

Garrett, R. D., Ryschawy, J., Bell, L. W., Cortner, O., Ferreira, J., Garik, A. V. N., Gil, J. D. B., Klerkx, L., Moraine, M., & Peterson, C. A. (2020). Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology and Society, 25(1), 24.

Gilman, A., Laurens, L. M., Puri, A. W., Chu, F., Pienkos, P. T., & Lidstrom, M. E. (2015). Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microbial Cell Factories, 14(1), 182.

Gordon, A., DeVlieger, D., Vasan, A., & Bedard, B. (2020). Technical considerations for the implementation of food safety and quality systems in developing countries. In Food safety and quality systems in developing countries (pp. 1–40). Elsevier.

Gorris, L. G. M., & Yoe, C. (2014). Risk analysis: risk assessment: principles, methods, and applications.

Guillier, L., Duret, S., Hoang, H.-M., Flick, D., Nguyen-Thé, C., & Laguerre, O. (2016). Linking food waste prevention, energy consumption and microbial food safety: the next challenge of food policy? Current Opinion in Food Science, 12, 30–35.

Gunes, B. (2021). A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes. Renewable and Sustainable Energy Reviews, 143, 110950.

Henard, C. A., Wu, C., Xiong, W., Henard, J. M., Davidheiser-Kroll, B., Orata, F. D., & Guarnieri, M. T. (2021). Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is essential for growth of the methanotroph Methylococcus capsulatus strain Bath. Applied and Environmental Microbiology, 87(18), e00881-21.

Hoejskov, P. S. (2017). History of Asian Food Policy. In International Food Law and Policy (pp. 1263–1294). Springer.

Holm, L., & Halkier, B. (2009). EU food safety policy: localising contested governance. European Societies, 11(4), 473–493.

Hundscheid, L., Voigt, C., Bergthaler, D., Plank, C., Wurzinger, M., & Melcher, A. H. (2024). Policy mix for the sustainable protein transition in Austria-Addressing repercussions of regime shifts as a prerequisite for acceleration. Environmental Innovation and Societal Transitions, 51, 100819.

Jain, S., Heffernan, J., Joshi, J., Watts, T., Marcellin, E., & Greening, C. (2023). Microbial conversion of waste gases into single-cell protein. Microbiology Australia, 44(1), 27–30.

Jiang, Y., Yang, X., Zeng, D., Su, Y., & Zhang, Y. (2022). Microbial conversion of syngas to single cell protein: The role of carbon monoxide. Chemical Engineering Journal, 450, 138041.

Jones, J. A., & Wang, X. (2018). Use of bacterial co-cultures for the efficient production of chemicals. Current Opinion in Biotechnology, 53, 33–38.

Kannadhasan, S., & Nagarajan, R. (2023). Green house gases: Challenges, effect, and climate change. In Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability (pp. 65–74). IGI Global Scientific Publishing.

Kannan, R., & James, D. A. (2009). Effects of climate change on global biodiversity: a review of key literature. Tropical Ecology, 50(1), 31.

Khan, M. K. I., Asif, M., Razzaq, Z. U., Nazir, A., & Maan, A. A. (2022). Sustainable food industrial waste management through single cell protein production and characterization of protein enriched bread. Food Bioscience, 46, 101406.

Kocasoy, G., & Yalin, H. (2004). Determination of carboxyhemoglobin levels and health effects on officers working at the Istanbul Bosphorus Bridge. Journal of Environmental Science and Health, Part A, 39(4), 1129–1139.

Konar, A., & Datta, S. (2022). Strain improvement of microbes. In Industrial Microbiology and Biotechnology (pp. 169–193). Springer.

Koukoumaki, D. I., Tsouko, E., Papanikolaou, S., Ioannou, Z., Diamantopoulou, P., & Sarris, D. (2024). Recent advances in the production of single cell protein from renewable resources and applications. Carbon Resources Conversion, 7(2), 100195.

Lee, S. A., Henard, J. M., Alba, R. A. C., Benedict, C. A., Mayes, T. A., & Henard, C. A. (2024). Overexpression of native carbonic anhydrases increases carbon conversion efficiency in the methanotrophic biocatalyst Methylococcus capsulatus Bath. Msphere, 9(9), e00496-24.

Lin, L., Huang, H., Zhang, X., Dong, L., & Chen, Y. (2022). Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. Science of The Total Environment, 835, 155559.

Mabee, W. E. (2022). Conceptualizing the circular bioeconomy. In Circular Economy and Sustainability (pp. 53–69). Elsevier.

Majstorović, A., Babić, V., & Todić, M. (2020). Carbon monoxide in the process of uncontrolled combustion-occurrence, hazards and first aid. Journal of Physics: Conference Series, 1426(1), 12008.

Makkar, H. P. S. (2016). Smart livestock feeding strategies for harvesting triple gain–the desired outcomes in planet, people and profit dimensions: a developing country perspective. Animal Production Science, 56(3), 519–534.

Mamphogoro, T. P., Mpanza, T. D. E., & Mani, S. (2024). Animal feed production and its contribution to sustainability of livestock systems: African perspective. The Marginal Soils of Africa: Rethinking Uses, Management and Reclamation, 37–54.

Mandato, D., Colarusso, G., Pellicanò, R., Baldi, L., Guarino, A., & Sarnelli, P. (2018). Official Controls According to Integrated Regional Plan in Campania Region 2011/2014. Italian Journal of Food Safety, 6(4), 5708.

Marku, D., Minga, A., & Sosoli, I. (2024). Circular Economy Perspective and Implications for Livestock Farming in Albania. The Open Agriculture Journal, 18(1).

Martinez, M. G. (2010). Enhancing consumer confidence in food supply chains. In Delivering performance in food supply chains (pp. 285–302). Elsevier.

Matassa, S., Papirio, S., Esposito, G., & Pirozzi, F. (2023). Protein from microscopic sources—a realistic scalable solution? In Future Proteins (pp. 195–220). Elsevier.

Millstone, E. (2012). Food safety: the ethical dimensions. In Food ethics (pp. 84–100). Routledge.

Mohajan, H. (2011). Dangerous effects of methane gas in atmosphere.

Molden, L., & Khanal, P. (2025). Establishing a circular economy-based livestock sector using alternative feeding resources requires a broader collaboration between local and global partners. In Research Handbook of Innovation in the Circular Bioeconomy (pp. 181–198). Edward Elgar Publishing.

Molden, L., Modic, D., Rasmussen, E., Jakobsen, S., & Vanhaverbeke, W. (2025). Introduction: harnessing innovation for advancing a circular bioeconomy. In Research Handbook of Innovation in the Circular Bioeconomy (pp. 2–14). Edward Elgar Publishing.

Nath, S., Henard, J. M., & Henard, C. A. (2022). Optimized tools and methods for methanotroph genome editing. In Engineering Natural Product Biosynthesis: Methods and Protocols (pp. 421–434). Springer.

Neto, A. S., Wainaina, S., Chandolias, K., Piatek, P., & Taherzadeh, M. J. (2024). Exploring the potential of syngas fermentation for recovery of high-value resources: a comprehensive review. Current Pollution Reports, 11(1), 7.

Pang, Q., Han, H., Qi, Q., & Wang, Q. (2022). Application and population control strategy of microbial modular co-culture engineering. Sheng Wu Gong Cheng Xue Bao= Chinese Journal of Biotechnology, 38(4), 1421–1431.

Parodi, A., Valencia-Salazar, S., Loboguerrero, A. M., Martínez-Barón, D., Murgueitio, E., & Vázquez-Rowe, I. (2022). The sustainable transformation of the Colombian cattle sector: Assessing its circularity. Plos Climate, 1(10), e0000074.

Pink, M., Kiełbasa, B., Niewiadomski, M., & Piecuch, K. (2025). Barriers and Challenges Faced in the Deployment of Principles of the Circular Bioeconomy: Awareness, Knowledge and Practices Based on the Example of Polish Agriculture. Sustainability, 17(10), 4729.

Place, S. E. (2024). Environmental Sustainability of Livestock Systems. Meat and Muscle Biology, 8(1).

Puente-Rodríguez, D., van Laar, H., & Veraart, M. (2022). A circularity evaluation of new feed categories in the Netherlands—squaring the circle: a review. Sustainability, 14(4), 2352.

Raad, M., & Bou-Mitri, C. (2024). Food Safety and Risk Perception of Consumers in the Middle East and North African Region. In Consumer Perceptions and Food (pp. 457–472). Springer.

Rabaey, K., Johnstone, A., Wise, A., Read, S., & Rozendal, R. (2010). Microbial electrosynthesis: from electricity to biofuels and biochemicals. BIOTECH INTERNATIONAL, 22(June).

Raita, S., Kusnere, Z., Spalvins, K., & Blumberga, D. (2022). Optimization of yeast cultivation factors for improved SCP production. Rigas Tehniskas Universitates Zinatniskie Raksti, 26(1), 848–861.

Rollin, B. E. (2006). Food Safety—Who Is Responsible? Foodbourne Pathogens & Disease, 3(2), 157–162.

Rosero-Chasoy, G., Rodríguez-Jasso, R. M., Aguilar, C. N., Buitrón, G., Chairez, I., & Ruiz, H. A. (2021). Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation–an overview. Bioresource Technology, 321, 124458.

Salazar-López, N. J., Barco-Mendoza, G. A., Zuñiga-Martínez, B. S., Domínguez-Avila, J. A., Robles-Sánchez, R. M., Ochoa, M. A. V., & González-Aguilar, G. A. (2022). Single-cell protein production as a strategy to reincorporate food waste and agro by-products back into the processing chain. Bioengineering, 9(11), 623.

Sanghavi, G., Gupta, P., Rajput, M., Oza, T., Trivedi, U., & Singh, N. K. (2020). Microbial strain engineering. In Engineering of microbial biosynthetic pathways (pp. 11–32). Springer.

Schmitz, L. M., Kreitli, N., Obermaier, L., Weber, N., Rychlik, M., & Angenent, L. T. (2024). Power-to-vitamins: producing folate (vitamin B9) from renewable electric power and CO2 with a microbial protein system. Trends in Biotechnology, 42(12), 1691–1714.

Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., & Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885.

Sharma, A., Sneed, J., & Beattie, S. (2012). Willingness to pay for safer foods in foodservice establishments. Journal of Foodservice Business Research, 15(1), 101–116.

Silano, V. (2005). Scientific activities and perspectives of the European Food Safety Authority (EFSA). AGRO FOOD INDUSTRY HI-TECH, 16(1), 4–5.

Sillman, J., Nygren, L., Kahiluoto, H., Ruuskanen, V., Tamminen, A., Bajamundi, C., Nappa, M., Wuokko, M., Lindh, T., & Vainikka, P. (2019). Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Global Food Security, 22, 25–32.

Smith, A. I. M. (2024). European Food Safety Authority—Providing scientific advice for EU food safety since 2002.

Søndergaard, N., Fernandes, J. F. A., Potent, J., Karl, K., Furtado, M., & Baethgen, W. (2023). A governance framework to manage the food-environment-livelihood trilemma of alternative proteins. One Earth, 6(7), 843–853.

Talaei, A., Gemechu, E., & Kumar, A. (2020). Key factors affecting greenhouse gas emissions in the Canadian industrial sector: A decomposition analysis. Journal of Cleaner Production, 246, 119026.

Tonsor, G. T., Schroeder, T. C., & Pennings, J. M. E. (2009). Factors impacting food safety risk perceptions. Journal of Agricultural Economics, 60(3), 625–644.

Ueda, Y., Yamamoto, M., Urasaki, T., Arai, H., Ishii, M., & Igarashi, Y. (2007). Sequencing and reverse transcription-polymerase chain reaction (RT-PCR) analysis of four hydrogenase gene clusters from an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. Journal of Bioscience and Bioengineering, 104(6), 470–475.

Veflen Olsen, N., & Motarjemi, Y. (2014). Food safety assurance systems: food safety and ethics. Encycl Food Saf, 4, 340–344.

Verbeeck, K., De Vrieze, J., Pikaar, I., Verstraete, W., & Rabaey, K. (2021). Assessing the potential for up‐cycling recovered resources from anaerobic digestion through microbial protein production. Microbial Biotechnology, 14(3), 897–910.

Vinnari, M., Vinnari, E., & Kupsala, S. (2017). Sustainability matrix: Interest groups and ethical theories as the basis of decision-making. Journal of Agricultural and Environmental Ethics, 30(3), 349–366.

Wise, L., Marecos, S., Randolph, K., Hassan, M., Nshimyumukiza, E., Strouse, J., Salimijazi, F., & Barstow, B. (2022). Thermodynamic constraints on electromicrobial protein production. Frontiers in Bioengineering and Biotechnology, 10, 820384.

Wyngaarden, S. L., Lightburn, K. K., & Martin, R. C. (2020). Optimizing livestock feed provision to improve the efficiency of the agri-food system. Agroecology and Sustainable Food Systems, 44(2), 188–214.

Yang, J., Kim, B., Kim, G. Y., Jung, G. Y., & Seo, S. W. (2019). Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. Biotechnology for Biofuels, 12(1), 113.

YAO, L., & ZHOU, Y. (2023). Progress in microbial utilization of one-carbon feedstocks for biomanufacturing. Chemical Industry and Engineering Progress, 42(1), 16.

Yaverino-Gutiérrez, M. A., Wong, A. Y. C.-H., Ibarra-Muñoz, L. A., Chávez, A. C. F., Sosa-Martínez, J. D., Tagle-Pedroza, A. S., Hernández-Beltran, J. U., Sánchez-Muñoz, S., Santos, J. C. dos, & da Silva, S. S. (2024). Perspectives and progress in bioethanol processing and social economic impacts. Sustainability, 16(2), 608.

Yu, H., Gibson, K. E., Wright, K. G., Neal, J. A., & Sirsat, S. A. (2017). Food safety and food quality perceptions of farmers’ market consumers in the United States. Food Control, 79, 266–271.

Yu, J. (2018). Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World Journal of Microbiology and Biotechnology, 34(7), 89.

Zhang, H., & Wang, X. (2016). Modular co-culture engineering, a new approach for metabolic engineering. Metabolic Engineering, 37, 114–121.

Zhang, L., Song, X., Chen, L., & Zhang, W. (2020). Recent progress in photosynthetic microbial co-culture systems. Sheng Wu Gong Cheng Xue Bao= Chinese Journal of Biotechnology, 36(4), 652–665.

Zhang, L., Zhao, R., Jia, D., Jiang, W., & Gu, Y. (2020). Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Current Opinion in Chemical Biology, 59, 54–61.

Zhao, S., Li, F., Yang, F., Ma, Q., Liu, L., Huang, Z., Fan, X., Li, Q., Liu, X., & Gu, P. (2023). Microbial production of valuable chemicals by modular co-culture strategy. World Journal of Microbiology and Biotechnology, 39(1), 6.

Zhu, Z., Wu, Y., Hu, W., Zheng, X., & Chen, Y. (2022). Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. Bioresource Technology, 361, 127704.

Additional Files

Published

2025-11-08

How to Cite

Amalyadi, R., & Widiastuti, L. K. (2025). Gas-to-feed revolution: a novel review of the microbial conversion of industrial emissions into sustainable livestock feed. Environmental and Agriculture Management, 2(2), 104–121. https://doi.org/10.31102/eam.2.2.104-121