Exploring the nutritional and functional potential of forage-based diets in poultry feeding systems: a systematic review toward sustainable avian nutrition
DOI:
https://doi.org/10.31102/eam.2.2.87-103Keywords:
forage-based diet, poultry nutrition, sustainable feeding systems, anti-nutritional factorsAbstract
The rising demand for sustainable and welfare-conscious poultry production has driven renewed interest in forage-based feeding systems. This systematic review explores the nutritional and functional roles of various forage types such as legumes, grasses, and aquatic plants in poultry diets. The review synthesizes evidence from recent Scopus-indexed publications, focusing on nutrient composition, bioactive properties, performance outcomes, and potential limitations. Forages provide protein, essential fatty acids, antioxidants, and phytochemicals that can enhance feed efficiency, immunity, gut health, and product quality in poultry. Their integration also aligns with circular agriculture principles and improves animal welfare through behavioral enrichment. However, the practical adoption of forage in poultry systems is constrained by variability in nutritional value, the presence of anti-nutritional factors (ANFs), low digestibility, and seasonal availability. Strategies such as fermentation, enzyme supplementation, and preservation techniques offer promising solutions to these challenges. This review identifies key research gaps, including the need for standardization of forage nutritional profiles, optimal inclusion rates, and long-term health impacts. Future directions highlight the potential of integrating precision nutrition technologies and policy support to enhance forage-based systems. Overall, forage represents a valuable component of sustainable poultry feeding strategies that balance performance, welfare, and environmental stewardship.
References
Abdelnour, S. A., Abd El-Hack, M. E., & Ragni, M. (2018). The efficacy of high-protein tropical forages as alternative protein sourcesfor chickens: A review. Agriculture, 8(6), 86.
Abera, D., Abebe, A., & Alebachew, H. (2024). Assessment of poultry feed and handling mechanisms of poultry production challenges in Benishangul-Gumuz Region, Western Ethiopia. Cogent Food & Agriculture, 10(1), 2313254.
Adejuyigbe, A. E., Sogunle, O. M., Onagbesan, O. M., & Oke, O. E. (2023). Growth performance and physiological responses of broilers fed Stylosanthes hamata leaf meal in a hot tropical environment. Veterinary Medicine and Science, 9(5), 2150–2159.
Agustono, B., Yunita, M. N., Lokapirnasari, W. P., Warsito, S. H., Marbun, T. D., & Windri, S. (2025). Optimizing male layer chicken performance and health with probiotic supplementation: A sustainable alternative to antibiotic growth promoters. Open Veterinary Journal, 15(2), 668.
Alkhtib, A., Wilson, P., Bedford, M. R., O’Neill, H., & Burton, E. (2023). Can the broiler industry rely on results of existing life cycle assessment and environmental assessments studies to inform broilers’ nutritional strategies? Poultry Science, 102(6), 102667.
Barszcz, M., Tuśnio, A., & Taciak, M. (2024). Poultry nutrition. Physical Sciences Reviews, 9(2), 611–650.
Biasato, I., Ferrocino, I., Biasibetti, E., Grego, E., Dabbou, S., Sereno, A., Gai, F., Gasco, L., Schiavone, A., & Cocolin, L. (2018). Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Veterinary Research, 14(1), 383.
Biasato, I., Ferrocino, I., Dabbou, S., Evangelista, R., Gai, F., Gasco, L., Cocolin, L., Capucchio, M. T., & Schiavone, A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. Journal of Animal Science and Biotechnology, 11(1), 11.
Bist, R. B., Bist, K., Poudel, S., Subedi, D., Yang, X., Paneru, B., Mani, S., Wang, D., & Chai, L. (2024). Sustainable poultry farming practices: a critical review of current strategies and future prospects. Poultry Science, 103(12), 104295.
Buchanan, N. P., Hott, J. M., Kimbler, L. B., & Moritz, J. S. (2007). Nutrient composition and digestibility of organic broiler diets and pasture forages. Journal of Applied Poultry Research, 16(1), 13–21.
Burton, G. W. (1996). 500 Years of Forage Germplasm Transfer. International Germplasm Transfer: Past and Present, 23, 61–67.
Cao, K.-X., Deng, Z.-C., Li, S.-J., Yi, D., He, X., Yang, X.-J., Guo, Y.-M., & Sun, L.-H. (2024). Poultry nutrition: achievement, challenge, and strategy. The Journal of Nutrition, 154(12), 3554–3565.
Castellini, C., & Dal Bosco, A. (2017). Animal welfare and poultry meat in alternative production systems (and ethics of poultry meat production). In Poultry Quality Evaluation (pp. 335–357). Elsevier.
Castellini, C., Bastianoni, S., Granai, C., Dal Bosco, A., & Brunetti, M. (2006). Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agriculture, Ecosystems & Environment, 114(2–4), 343–350.
Chaniago, R., Hasanuddin, A., Rahim, A., & Lamusu, D. (2024). Analysis sensory edible film from Banggai yam starch phosphate. Environmental and Agriculture Management, 1(2), 101-108. https://doi.org/10.31102/eam.1.2.101-108
Chen, Y., Zhu, F., Yu, G., Peng, N., Li, X., Ge, M., Yang, L., & Dong, W. (2025). Bifidobacterium bifidum postbiotics prevent Salmonella Pullorum infection in chickens by modulating pyroptosis and enhancing gut health. Poultry Science, 104(4), 104968.
Cheng, Z., Jia, Y., Bai, Y., Zhang, T., Ren, K., Zhou, X., Zhai, Y., Shen, X., & Hong, J. (2023). Intensifying the environmental performance of chicken meat production in China: From perspective of life cycle assessment. Journal of Cleaner Production, 384, 135603.
Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006–1021.
de Pinho Carao, A. C., de Castro Burbarelli, M. F., do Valle Polycarpo, G., dos Santos, A. R., de Albuquerque, R., & de Oliveira, C. A. F. (2014). Physical and chemical methods of detoxification of aflatoxins and reduction of fungal contamination on poultry productive chain/Metodos fisicos e quimicos de detoxificacao de aflatoxinas e reducao da contaminacao fungica na cadeia produtiva avicola. Ciencia Rural, 44(4), 699–706.
Dedousi, A., Kotzamanidis, C., Kritsa, M.-Z., Tsoureki, A., Andreadelli, A., Patsios, S. I., & Sossidou, E. (2022). Growth performance, gut health, welfare and qualitative behavior characteristics of broilers fed diets supplemented with dried common (Olea europaea) olive pulp. Sustainability, 15(1), 501.
Dewi, G., Smith, C., Martin, W., Venkitanarayanan, K., & Kollanoor Johny, A. (2024). Focus groups exploring American consumer perspectives on contemporary poultry production reveal critical insights to educate sustainable practices for producers. Frontiers in Sustainable Food Systems, 8, 1416167.
Ducatelle, R., Goossens, E., Eeckhaut, V., & Van Immerseel, F. (2023). Poultry gut health and beyond. Animal Nutrition, 13, 240–248.
Egbu, C. F., Mulaudzi, A., Motsei, L. E., & Mnisi, C. M. (2024). Moringa oleifera products as nutraceuticals for sustainable poultry production. Agriculture & Food Security, 13(1), 54.
El Jeni, R., Dittoe, D. K., Olson, E. G., Lourenco, J., Seidel, D. S., Ricke, S. C., & Callaway, T. R. (2021). An overview of health challenges in alternative poultry production systems. Poultry Science, 100(7), 101173.
Elnesr, S. S., Elwan, H. A. M., El Sabry, M. I., & Shehata, A. M. (2023). The nutritional importance of milk thistle (Silybum marianum) and its beneficial influence on poultry. World’s Poultry Science Journal, 79(4), 751–768.
Elokil, A., Li, S., Chen, W., Farid, O., Abouelezz, K., Zohair, K., Nassar, F., El-Komy, E., Farag, S., & Elattrouny, M. (2024). Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poultry Science, 103(6), 103761.
Farahat, M. H., Abdallah, F. M., Ali, H. A., & Hernandez-Santana, A. (2017). Effect of dietary supplementation of grape seed extract on the growth performance, lipid profile, antioxidant status and immune response of broiler chickens. Animal, 11(5), 771–777.
Fernandes, R. T. V, Arruda, A. M. V. de, Araújo, M. S. de, Melo, A. da S., Marinho, J. B. M., Vasconcelos, N. V. B., Lopes, F. de F., & Holanda, J. S. de. (2015). Energy values and digestibility coefficients of a traditional ration for Label Rouge poultry in different ages.
Fonsatti, E., Bortoletti, M., Birolo, M., Bordignon, F., Xiccato, G., Trocino, A., Bertotto, D., Vascellari, M., Radaelli, G., & Ballarin, C. (2025). Histochemical and Immunohistochemical Evaluation of the Effects of a Low-Input Diet on Different Chicken Breeds. Animals, 15(5), 696.
Fries-Craft, K., Meyer, M. M., & Bobeck, E. A. (2021). Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction. Poultry Science, 100(9), 101369.
Garfansa, M. P., Bakhtiar, A., Ramadani, S. D., Zalizar, L., Husen, S., Triwanto, J., Iswahyudi, I., Lasaksi, P., & Ekalaturrahmah, Y. A. C. (2025). Microplastics in Irrigation Systems: A Growing Threat to Agriculture Soil and Crop Plant. Environmental Quality Management, 34(4), e70099. https://doi.org/10.1002/tqem.70099
Golestan, I. (2010). Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv, 9, 2295–2304.
Gunnarsson, S., Arvidsson Segerkvist, K., Göransson, L., Hansson, H., & Sonesson, U. (2020). Systematic mapping of research on farm-level sustainability in egg and chicken meat production. Sustainability, 12(7), 3033.
Habiyaremye, N., Ochieng, J., & Heckelei, T. (2021). Economic analysis of integrated vegetable–poultry production systems in the Babati District of Tanzania. Agriculture & Food Security, 10(1), 1.
Hester, P. Y. (2005). Impact of science and management on the welfare of egg laying strains of hens. Poultry Science, 84(5), 687–696.
İpçak, H. H., & Denli, M. (2024). The potential of herbal feed additives in poultry nutrition. CABI Reviews, 19(1).
Islam, K. M. S. (2024). Feasibility of duckweed as poultry feed – A review. ResearchGate. https://www.researchgate.net/publication/286889789_Feasibility_of_duckweed_as_poultry_feed_-_A_review
Jimenez, R. R., de Leon Matel, I., Alcantara, M. N., & King N Layos, J. (2024). Profitability and potential of papaya leaf extract as pretreatment in feeds during the early growth performance of Philippine native chickens. Chilean Journal of Agricultural & Animal Sciences, 40(2), 399–406.
Kalia, S., Bharti, V. K., Giri, A., Malairaman, U., Biswas, A., & Kumar, B. (2021). Effect of Salix alba leave extract on growth performance, antioxidant level and immune status of broiler chickens reared at high altitude cold desert. Biologia, 76(10), 3003–3015.
Kandel, M., Macelline, S. P., Melwani, R., Toghyani, M., Zadoks, R. N., Selle, P. H., & Liu, S. Y. (2025). Increased dietary nutrient density did not restore growth performance in broiler chickens offered diets with high canola inclusion. Journal of Applied Poultry Research, 100566.
Kareem, D. U., Amos, A. T., Idowu, O. P. A., Egbeyale, L. T., Sobayo, R. A., Adeniran, A. D., Akinlade, A. I., Ojebode, Z. A., Olaniyi, S. I., & Iyaomolere, A. O. (2022). Impacts of particle size and multienzyme supplementation on growth, cost-benefit, carcass characteristics, and nutrient digestibility of broilers. Livestock Science, 266, 105105.
Kiani, A. (2022). Effects of group sizing on behavior, welfare, and productivity of poultry. Journal of World’s Poultry Research, 12(1), 52–68.
Kirkpinar, F., & Atan, H. (2022). Sustainability strategies in poultry nutrition.
Kirkpinar, F., Açikgöz, Z., Bozkurt, M., & Ayhan, V. (2004). Effects of inclusion of poultry by-product meal and enzyme-prebiotic supplementation in grower diets on performance and feed digestibility of broilers. British Poultry Science, 45(2), 273–279.
Lessire, M., Gallo, V., Prato, M., Akide-Ndunge, O., Mandili, G., Marget, P., Arese, P., & Duc, G. (2017). Effects of faba beans with different concentrations of vicine and convicine on egg production, egg quality and red blood cells in laying hens. Animal, 11(8), 1270–1278.
Liu, P., Zhu, R., Gu, Y., Xu, Z., Zou, H., Gu, J., Yuan, Y., Liu, Z., & Bian, J. (2025). Effects of Ganoderma spent substrate containing with polysaccharides and triterpenoids on the growth performance, antioxidant capacity and immunity level of chickens. International Journal of Biological Macromolecules, 145318.
Lyte, J. M., Arsi, K., Caputi, V., Liyanage, R., Assumpcao, A. L. F. V, Jesudhasan, P. R. R., & Donoghue, A. M. (2024). Inclusion of trans-cinnamaldehyde and caprylic acid in feed results in detectable concentrations in the chicken gut and reduces foodborne pathogen carriage. Poultry Science, 103(2), 103368.
Mahmood, S., Younus, M., Aslam, A., Anjum, A. A., & Sohail, M. L. (2017). Chemical detoxification of AFB1 in experimental quails using commercially available toxin binders. JAPS: Journal of Animal & Plant Sciences, 27(4).
Martinez, D. A., Ponce-de-Leon, C. L., & Coon, C. N. (2024). Exploring the potential of artificial intelligence in feed formulation to advance poultry health and One Health. Ger. J. Vet. Res, 4(4), 1–3.
Maty, H. N. (2021). Ecophysiology of antioxidants in poultry diet. Journal of Applied Veterinary Sciences, 6(3), 54–59.
Mekonnen, Y. T., Savini, F., Indio, V., Seguino, A., Giacometti, F., Serraino, A., Candela, M., & De Cesare, A. (2024). Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poultry Science, 103(5), 103607.
Miao, Z. H., Glatz, P. C., & Ru, Y. J. (2005). Free-range poultry production-A review. Asian-Australasian Journal of Animal Sciences, 18(1), 113–132.
Minh, D. V, & Ogle, B. (2005). Effect of scavenging and supplementation of lysine and methionine on the feed intake, performance and carcase quality of improved dual-purpose growing chickens. Tropical Animal Health and Production, 37(7), 573–587.
Mnisi, C. M., Mlambo, V., Montso, P. K., Manyeula, F., Kumanda, C., & Moreki, J. C. (2024). Nutraceuticals as components of sustainable poultry production systems for food and nutrition security in Africa: a review. Agriculture & Food Security, 13(1), 24.
Mountzouris, K. C., & Brouklogiannis, I. (2024). Phytogenics as natural gut health management tools for sustainable poultry production. Livestock Science, 286, 105525.
Mubamba, C., Ramsay, G., Abolnik, C., Dautu, G., & Gummow, B. (2018). Analysing production and financial data from farmers can serve as a tool for identifying opportunities for enhancing extension delivery among the rural poultry sub-sector in Zambia. Preventive Veterinary Medicine, 158, 152–159.
Naeem, M., & Bourassa, D. (2025). Probiotics in poultry: Unlocking productivity through microbiome modulation and gut health. Microorganisms, 13(2), 257.
Nasir, N. A. N. M., Khan, A., Mahmud, A., Abdelrahman, M., Abasubong, K. P., & Abd El-Hack, M. E. (2022). Sustainable alternative animal feeds: Recent advances and future perspective of using Azolla as animal feed in livestock, poultry and fish nutrition. Sustainable Chemistry and Pharmacy, 25, 100581. https://doi.org/10.1016/j.scp.2021.100581.
Normuhammedova, F., & Rajamurodov, Z. (2025). The nutritional value of Azolla caroliniana wild as animal feed. American Journal of Plant Sciences, 16(3), 539–550. https://doi.org/10.4236/ajps.2025.163029.
Ohiwal, M., Teele, T., & Garfansa, M. P. (2025). Legume-Grass Intercropping in Indonesian Pastures: A Systematic Review on Soil and Forage Nutritional Improvements. Environmental and Agriculture Management, 2(1), 34-47. https://doi.org/10.31102/eam.2.1.34-47
Okeno, T. O., Magothe, T. M., Kahi, A. K., & Peters, K. J. (2012). Breeding objectives for indigenous chicken: Model development and application to different production systems. Tropical Animal Health and Production, 45(1), 193–203.
Ponte, P. I. P., Prates, J. A. M., Crespo, J. P., Crespo, D. G., Mourão, J. L., Alves, S. P., Bessa, R. J. B., Chaveiro-Soares, M. A., Ferreira, L. M. A., & Fontes, C. (2008). Improving the lipid nutritive value of poultry meat through the incorporation of a dehydrated leguminous-based forage in the diet for broiler chicks. Poultry Science, 87(8), 1587–1594.
Ponte, P. I. P., Rosado, C. M. C., Crespo, J. P., Crespo, D. G., Mourão, J. L., Chaveiro-Soares, M. A., Bras, J. L. A., Mendes, I., Gama, L. T., & Prates, J. A. M. (2008). Pasture intake improves the performance and meat sensory attributes of free-range broilers. Poultry Science, 87(1), 71–79.
Salahi, A., Attia, Y. A., Zabermawi, N. M., Bovera, F., Shafi, M. E., Laudadio, V., & Tufarelli, V. (2025). Wheat Bran Beyond a Fiber Source for Sustainable Poultry Nutrition: A Comprehensive Review. Journal of the Hellenic Veterinary Medical Society, 76(2), 9321–9348.
Sanka, Y. D., Mbaga, S. H., & Mutayoba, S. K. (2021). Evaluation of egg production and egg quality of Sasso and Kuroiler chickens fed three diets at varying levels of supplementation under a semi-intensive system of production in Tanzania. Animal Production Science, 61(14), 1467–1475.
Sayed, Y., Hassan, M., Salem, H. M., Al-Amry, K., & Eid, G. E. (2025). Probiotics/prebiotics effect on chicken gut microbiota and immunity in relation to heat-stress and climate-change mitigation. Journal of Thermal Biology, 104097.
Schokker, D., Smits, M. A., Fledderus, J., & Kar, S. K. (2022). Nutritional value of duckweed as protein feed for broiler chickens. Animals, 13(1), 130. https://doi.org/10.3390/ani13010130.
Shamsuddoha, M. (2022). Sustainable outcomes through the structured forward supply chain: A system dynamic approach. In Understanding the dynamics of new normal for supply chains: Post COVID opportunities and challenges (pp. 55–80). Springer.
Singh, M., & Cowieson, A. J. (2013). Range use and pasture consumption in free-range poultry production. Animal Production Science, 53(11), 1202–1208.
Siwach, A., Saini, S., Giri, A., Khatri, P., Kuhad, R. C., & Kumar, A. (2025). Sustainable poultry feed formulations from fruit and vegetable residues for advancing animal health. Bioresource Technology Reports, 102159.
Soisontes, S. (2017). Concerns about sustainability in the poultry industry: a comparative Delphi study in Germany and Thailand. World’s Poultry Science Journal, 73(4), 886–903.
Thongthung, H., Chungopast, S., & Petchpoung, K. (2024). Chemical composition and in vitro protein digestibility of duckweed (Lemna, Wolffia, and Spirodela) in comparison to other feed ingredients. Trends in Sciences, 21(11), 8324. https://doi.org/10.48048/tis.2024.8324.
Tufarelli, V., Ragni, M., & Laudadio, V. (2018). Feeding forage in poultry: a promising alternative for the future of production systems. Agriculture, 8(6), 81.
Vlaicu, P. A., Untea, A. E., & Oancea, A. G. (2024). Sustainable poultry feeding strategies for achieving zero hunger and enhancing food quality. Agriculture, 14(10), 1811.
Walker, A., & Gordon, S. (2003). Intake of nutrients from pasture by poultry. Proceedings of the Nutrition Society, 62(2), 253–256.
Woyengo, T. A., & Nyachoti, C. M. (2011). Supplementation of phytase and carbohydrases to diets for poultry. Canadian Journal of Animal Science, 91(2), 177–192.
Yalew, A., & Mekonnen, H. (2024). Effect of feeding Azolla pinnata diet on growth of broilers: A review. Global Journal of Animal Scientific Research, 12(4), 185–194.
Zheng, M., Mao, P., Tian, X., & Meng, L. (2019). Growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken on diets with inclusion of fresh chicory forage. Italian Journal of Animal Science, 18(1), 1310–1320.
Additional Files
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
