Vermicomposting as a potential strategy for microplastic reduction in organic waste: mini review
DOI:
https://doi.org/10.31102/eam.2.1.58-71Keywords:
Earthworm, Microplastic, Vermicomposting, VermicompostAbstract
Microplastics have emerged as one of the most concerning pollutants increasingly detected in organic waste streams, including household waste, agricultural residues, and fecal sludge. The presence of microplastics in recycled waste products, such as compost, introduces a new threat to soil quality and food safety. One promising biological approach for mitigating microplastic contamination is vermicomposting a process that involves the decomposition of organic waste facilitated by earthworms. This review aims to evaluate the potential of vermicomposting in reducing microplastic contamination, as well as its effects on earthworm health and the quality of the resulting compost. The methodology involved an extensive literature review of articles published in Scopus-indexedjournals between 2020 and 2025. The review findings indicate that earthworm activity can contribute to the physical fragmentation of microplastics, stimulate microbial degradation within the gut, and potentially alter the chemical structures of specific polymers, such as polypropylene (PP) and high-density polyethylene (HDPE). However, the presence of microplastics also exerts negative effects, including the induction of oxidative stress, reduced earthworm biomass, decreased survival rates, and alterations in compost quality, particularly the carbon-to-nitrogen (C/N) ratio. These findings suggest that although vermicomposting is not yet fully capable of completely degrading microplastics, it holds potential as an early-stage technology for managing organic waste contaminated with microplastics. Further research is required to gain a deeper understanding of the underlying biological mechanisms and to develop more efficient and safe integrated vermicomposting systems for sustainable agricultural practices.
References
Ahmed, M., Ahmad, S., Fayyaz ul, H., Qadir, G., Hayat, R., Shaheen, F. A., & Raza, M. A. (2019). Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review. Sustainability, 11(18), 4938. https://doi.org/10.3390/su11184938
Amesho, K. T. T., Chinglenthoiba, C., Samsudin, M. S. A. B., Lani, M. N., Pandey, A., Desa, M. N. M., & Suresh, V. (2023). Microplastics in the environment: An urgent need for coordinated waste management policies and strategies. Journal of Environmental Management, 344, 118713. https://doi.org/10.1016/j.jenvman.2023.118713
Bhat, S. A., Han, Z. M., Dewi, S. K., Wei, Y., & Li, F. (2024). Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. Environmental Geochemistry and Health, 46(6), 189. https://doi.org/10.1007/s10653-024-01974-9
Chatterjee, R., Debnath, A., & Mishra, S. (2020). Vermicompost and Soil Health. Springer International Publishing. https://doi.org/https://doi.org/10.1007/978-3-030-44364-1_4
Cherian, T., Eranhottu, S., Kurien, S., & Cherian, B. (2025). Chapter 14 - Role of earthworms in the degradation of microplastics. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-23599-3.00019-8
Cui, G., Lü, F., Hu, T., Zhang, H., Shao, L., & He, P. (2022). Vermicomposting leads to more abundant microplastics in the municipal excess sludge. Chemosphere, 307, 136042. https://doi.org/10.1016/j.chemosphere.2022.136042
Ducasse, V., Capowiez, Y., & Peigné, J. (2022). Vermicomposting of municipal solid waste as a possible lever for the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 42(5), 89. https://doi.org/10.1007/s13593-022-00819-y
Edo, C., Fernández-Piñas, F., & Rosal, R. (2022). Microplastics identification and quantification in the composted organic fraction of municipal solid waste. Science of the Total Environment, 813, 151902. https://doi.org/10.1016/j.scitotenv.2021.151902
Ekalaturrahmah, Y. A. C., Shidqi, M. T., Garfansa, M. P., Sholeh, M. S., Hartati, F. K., Sutanto, A., Iswahyudi, I., & Putri, A. K. (2025). Identification and quantification of microplastics in water, sediment, and shrimp collected from shrimp farming ponds. Bioresource Technology Reports, 29, 102064. https://doi.org/10.1016/j.biteb.2025.102064
Garfansa, M. P., Setyobudi, R. H., Iswahyudi, I., Anwar, S., Damat, D., Liwang, T., Susanti, M. S., Hermayanti, D., Setiawani, M., Subchi, T. D. N., Mariyam, D., Ananda, Y. M., Wahono, S. K., Basir, A., Musrif, M., & Khan, A. S. (2024a). Potential impact microplastic polyethylene terephthalate on mice. Sarhad Journal of Agriculture, 39(1), 47-60. https://dx.doi.org/10.17582/journal.sja/2023/39/s1.47.60
Garfansa, M. P., Zalizar, L., Husen, S., Triwanto, J., Iswahyudi, I., & Ekalaturrahmah, Y. A. C. (2024b). Fate and distribution of microplastics in water and sediment collected from Samiran ditch irrigation. Environmental Quality Management, 35(1), e22204-22215. https://doi.org/10.1002/tqem.22204
Garfansa, M. P., Zalizar, L., Husen, S., Triwanto, J., Ramadani, S. D., Iswahyudi, I., & Ekalaturrahmah, Y. A. C. (2024c). Research and Trends of Filtration for Removing Microplastics in Freshwater Environments. Environmental Quality Management, 34(1), e22301. https://doi.org/10.1002/tqem.22301
Gui, J., Sun, Y., Wang, J., Chen, X., Zhang, S., & Wu, D. (2021). Microplastics in composting of rural domestic waste: abundance, characteristics, and release from the surface of macroplastics. Environmental Pollution, 274, 116553. https://doi.org/10.1016/j.envpol.2021.116553
Hernandez, J. C. S., Capowiez, Y., & Ro, K. S. (2020). Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics. ACS Sustainable Chemistry & Engineering, 8(11), 4292-4316. https://doi.org/10.1021/acssuschemeng.9b05450
Hernandez, J. C. S., Ro, K. S., Szogi, A. A., Chang, S., & Park, B. (2021). Earthworms increase the potential for enzymatic bio-activation of biochars made from co-pyrolyzing animal manures and plastic wastes. Journal of Hazardous Materials, 408, 124405. https://doi.org/10.1016/j.jhazmat.2020.124405
Hussain, N., Chatterjee, S. K., Maiti, T. K., Goswami, L., Das, S., Deb, U., & Bhattacharya, S. S. (2021). Metal induced non-metallothionein protein in earthworm: A new pathway for cadmium detoxification in chloragogenous tissue. Journal of Hazardous Materials, 401, 123357. https://doi.org/10.1016/j.jhazmat.2020.123357
Iswahyudi, I., Sutanto, A., Widodo, W., Warkoyo, W., Garfansa, M. P., Arifin, S., Holifah, S., Sugiono, S., Sholeh, M. S., & Ramadani, S. D. (2024a). The effect of microplastic contaminated compost on the growth of rice seedlings. Journal of the Saudi Society of Agricultural Sciences, 23(8), 1-8. https://doi.org/10.1016/j.jssas.2024.07.001
Iswahyudi, I., Sutanto, A., Widodo, W., Warkoyo, W., Yuniwati, E. D., Garfansa, M. P., Ekalaturrahmah, Y. A. C., Sugiono, S., Ramadani, S. D., & Setyobudi, R. H. (2024b). Impact of Microplastics on the Carbon and Nitrogen of Vermicompost. Environmental Quality Management, 34(2), e22325. https://doi.org/10.1002/tqem.22325
Iswahyudi, I., Syafiuddin, A., & Boopathy, R. (2025a). A Mini Review on Biologically Innovative Solution for Biodegradation of Plastics/Microplastics by the Use of Superworms. Current Pollution Reports, 11(1), 5. https://doi.org/10.1007/s40726-024-00335-5
Iswahyudi, I., Syafiuddin, A., Garfansa, M. P., & Boopathy, R. (2025b). Sources and impact of microplastics in compost and approaches for enhancing their biodegradation. Bioresource Technology Reports, 29, 102072. https://doi.org/10.1016/j.biteb.2025.102072
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Ekalaturrahmah, Y. A. C., & Garfansa, M. P. (2025c). The Effect of Polyethylene Terephthalate and Low-density Polyethylene Microplastics in Organic Material on Vermicomposting Process. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 35(1), e0261603-e0261615. https://doi.org/10.55003/cast.2025.261603
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Ekalaturrahmah, Y. A. C., & Garfansa, M. P. (2025d). The Effect of Polyethylene Terephthalate and Low-density Polyethylene Microplastics in Organic Material on Vermicomposting Process. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 25(4), e0261603-e0261603. https://doi.org/10.55003/cast.2025.261603
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Garfansa, M. P., Mujiyanti, W. A., & Sholeh, M. S. (2024c). Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management, 36(1), e22287-22297. https://doi.org/10.1002/tqem.22287
Iswahyudi, I., Widodo, W., Warkoyo, W., Sutanto, A., Garfansa, M. P., & Septia, E. D. (2024d). Determination and quantification of microplastics in compost. Environmental Quality Management, 35(1), e22184-22194. https://doi.org/10.1002/tqem.22184
Khaldoon, S., Lalung, J., Kamaruddin, M. A., Yhaya, M. F., Alam, M., Siddiqui, M. R., & Rafatullah, M. (2022a). Short-term effect of poly lactic acid microplastics uptake by Eudrilus eugenia. Journal of King Saud University - Science, 34(5), 102111. https://doi.org/10.1016/j.jksus.2022.102111
Khaldoon, S., Lalung, J., Maheer, U., Kamaruddin, M. A., Yhaya, M. F., Alsolami, E. S., Alorfi, H. S., Hussein, M. A., & Rafatullah, M. (2022b). A Review on the Role of Earthworms in Plastics Degradation: Issues and Challenges. Polymers, 14(21), 4770. https://doi.org/10.3390/polym14214770
Mamun, A. A., Prasetya, T. A. E., Dewi, I. R., & Ahmad, M. (2023). Microplastics in human food chains: Food becoming a threat to health safety. Science of The Total Environment, 858, 159834. 10.1016/j.scitotenv.2022.159834
Marco, B. Z. E., Sáez, J. A., Pedraza Torres, A. M., Martínez Sabater, E., Orden, L., Andreu-Rodríguez, F. J., Bustamante, M. A., Marhuenda-Egea, F. C., López, M. J., Suárez-Estrella, F., & Moral, R. (2023). Effect of agricultural microplastic and mesoplastic in the vermicomposting process: Response of Eisenia fetida and quality of the vermicomposts obtained. Environmental Pollution, 333, 122027. https://doi.org/10.1016/j.envpol.2023.122027
Meng, K., Lwanga, E. H., van der Zee, M., Munhoz, D. R., & Geissen, V. (2023). Fragmentation and depolymerization of microplastics in the earthworm gut: A potential for microplastic bioremediation? Journal of Hazardous Materials, 447, 130765. https://doi.org/10.1016/j.jhazmat.2023.130765
Mohammadi, A., Malakootian, M., Dobaradaran, S., Hashemi, M., Jaafarzadeh, N., & De-la-Torre, G. E. (2023). Occurrence and ecological risks of microplastics and phthalate esters in organic solid wastes: In a landfill located nearby the Persian Gulf. Chemosphere, 332, 138910. https://doi.org/10.1016/j.chemosphere.2023.138910
Mor, S., & Ravindra, K. (2023). Municipal solid waste landfills in lower- and middle-income countries: Environmental impacts, challenges and sustainable management practices. Process Safety and Environmental Protection, 174, 510-530. https://doi.org/10.1016/j.psep.2023.04.014
Okori, F., Schwarzböck, T., Neuburg, S., Komakech, A. J., Lederer, J., & Fellner, J. (2025). Macro- and microplastics in composts from municipal solid waste industrial composting Plants in Uganda. Waste Management, 204, 114942. https://doi.org/10.1016/j.wasman.2025.114942
Putri, E. B. P., Syafiuddin, A., Aini, S. A., Iswahyudi, I., & Garfansa, M. P. (2023). Identification and quantification of microplastics in sea water and sea salt collected from sea salt ponds. Desalination and Water Treatment, 300, 130-135. https://doi.org/10.5004/dwt.2023.29719
Ragoobur, D., Huerta-Lwanga, E., & Somaroo, G. D. (2022). Reduction of microplastics in sewage sludge by vermicomposting. Chemical Engineering Journal, 450, 138231. https://doi.org/10.1016/j.cej.2022.138231
Rashti, M. R., Hintz, J., Esfandbod, M., Bahadori, M., Lan, Z., & Chen, C. (2023). Detecting microplastics in organic-rich materials and their potential risks to earthworms in agroecosystems. Waste Management, 166, 96-103. https://doi.org/10.1016/j.wasman.2023.04.047
Ratnasari, A., Syafiuddin, A., Mehmood, M. A., & Boopathy, R. (2023). A review of the vermicomposting process of organic and inorganic waste in soils: Additives effects, bioconversion process, and recommendations. Bioresource Technology Reports, 21, 101332. https://doi.org/10.1016/j.biteb.2023.101332
Ratnasari, A., Zaidi, N. S., Syafiuddin, A., Boopathy, R., Kueh, A. B. H., Amalia, R., & Prasetyo, D. D. (2021). Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresource Technology Reports, 15, 100809. https://doi.org/10.1016/j.biteb.2021.100809
Risku, N., Dahl, O., Vanhanen, H., Pulkkinen, K., Litmanen, J. J., Rigaud, C., & Taipale, S. J. (2025). Breakdown of plastic waste into microplastics during an industrial Composting: A case study from a biowaste facility. Waste Management, 203, 114889. https://doi.org/10.1016/j.wasman.2025.114889
Seetasang, S., & Iwai, C. B. (2025). Enhancing domestic wastewater treatment: Integrating vermifiltration and biochar for heavy metal and microplastic reduction and by-product utilization. Case Studies in Chemical and Environmental Engineering, 11, 101025. https://doi.org/10.1016/j.cscee.2024.101025
Setyobudi, R. H., Anwar, S., Garfansa, M. P., Liwang, T., Iswahyudi, I., Damat, D., Savitri, E. S., Wahono, S. K., Latipun, L., & Adinurani, P. G. (2024a). Microplastic Debris in Palm Cooking Oil: A Call for Research. BIO Web of Conferences, 104(1), 00037-00047. https://doi.org/10.1051/bioconf/202410400037
Setyobudi, R. H., Anwar, S., Iswahyudi, I., Husen, S., Damat, D., & Garfansa, M. P. (2024b). Identification and quantification of microplastics contamination in potato from Malang Raya, Indonesia. BIO Web of Conferences 104(1), 36. https://doi.org/10.1051/bioconf/202410400036
Setyobudi, R. H., Iswahyudi, I., Damat, D., Garfansa, M. P., Hermayanti, D., Ramadani, S. D., Vincevica-Gaile, Z., Nurfadilah, L. R., Savitri, E. S., & Meylanzharie, Z. (2024c). Presence of Microplastics in Water, Soil, Organic Fertilizer, and Potato Plants on Potato Plantations. Environmental Quality Management, 34(2), e70001. https://doi.org/10.1002/tqem.70001
Sholokhova, A., Ceponkus, J., Sablinskas, V., & Denafas, G. (2022). Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. Environmental Science and Pollution Research, 29(14), 20665-20674. https://doi.org/10.1007/s11356-021-17378-6
Steiner, T., Möller, J. N., Löder, M. G. J., Hilbrig, F., Laforsch, C., & Freitag, R. (2023). Microplastic Contamination of Composts and Liquid Fertilizers from Municipal Biowaste Treatment Plants: Effects of the Operating Conditions. Waste and Biomass Valorization, 14(3), 873-887. https://doi.org/10.1007/s12649-022-01870-2
Tan, M., Sun, Y., Gui, J., Wang, J., Chen, X., Song, W., & Wu, D. (2022). Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products. Science of the Total Environment, 852, 158440. https://doi.org/10.1016/j.scitotenv.2022.158440
Zhong, H., Yang, S., Zhu, L., Liu, C., Zhang, Y., & Zhang, Y. (2021). Effect of microplastics in sludge impacts on the vermicomposting. Bioresource Technology, 326, 124777. https://doi.org/10.1016/j.biortech.2021.124777
Zhou, Y., Ren, X., Tsui, T.-H., Barcelo, D., Wang, Q., Zhang, Z., & Yongzhen, D. (2023). Microplastics as an underestimated emerging contaminant in solid organic waste and their biological products: Occurrence, fate and ecological risks. Journal of Hazardous Materials, 445, 130596. https://doi.org/10.1016/j.jhazmat.2022.130596
Additional Files
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
