Implementation of the K-Means Method for Beverage Clustering Based on Calorie and Protein
DOI:
https://doi.org/10.31102/zeta.2025.10.1.19-29Keywords:
Klaster, Klasterisasi, Clustreing, K-MeansAbstract
Recently, the number of coffee shops in big cities in Indonesia has increased. This makes it easier for coffee lovers to enjoy it. With the increasing public awareness of the importance of healthy drinking patterns in preventing diabetes and other diseases, consuming low-calorie drinks has become a prominent trend. This study aims to group the coffee drink menu at Starbucks based on the calorie and protein content of Starbucks drinks. It is grouped into 2 clusters, namely, high and low clusters. In this study, the clustering process of Starbucks drink menu data was carried out by applying the K-Means algorithm. The clustering results can identify members of Cluster 1 and members of Cluster 2. From the tests that have been carried out, it can group the drink menu into 2 clusters based on the amount of protein and calories from Starbucks drinks and help the public choose which drinks are better to consume.
Downloads
References
Ali, P. J. M. (2022). Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements. Aro-the Scientific Journal of Koya University, 10(1), 85–91. https://doi.org/10.14500/aro.10955
Alvisan, F. K. (2021). Clustering Minimarket Untuk Menentukan Jumlah Kebutuhan Pembelian Menggunakan Metode K-Means. Nusantara of Engineering (NOE), 4(2), 160. https://doi.org/10.29407/noe.v4i2.16784
Amborowati, A., & Winarko, E. (2014). Review Pemanfaatan Teknik Data Mining Dalam Segmentasi Konsumen. https://ejournal.gunadarma.ac.id/index.php/kommit/article/ download/1009/869
Ariasa, K., Gede, I., Gunadi, A., & Made Candiasa, I. (2020). Optimasi Algoritma Klaster Dinamis Pada K-Means dalam Pengelompokan Kinerja Akademik Mahasiswa (Studi Kasus: Universitas Pendidikan Ganesha). Janapati, 9(2), 181–194.
Arifin, Moh. M., & Agustin, M. (2023). Analisis Strategi Pengembangan Usaha Menggunakan SWOT dan Business Model Canvas Pada Produk Air Minum Dalam Kemasan PT. Abutama. Jurnal KaLIBRASI - Karya Lintas Ilmu Bidang Rekayasa Arsitektur Sipil Industri, 6(1), 1. https://doi.org/10.37721/kalibrasi.v6i1.1072
Aryadi, A. R., Andreas, F., & Sari, B. N. (2022). Analisis Klaster K-Means pada Data Rata-Rata Konsumsi Kalori dan Protein Menurut Provinsi dengan Metode Davies Bouldin Index. Jurnal Pendidikan Dan Konseling, 4(4), 5652–5661.
Ashari, B. S., Otniel, S. C., & Rianto. (2019). Perbandingan Kinerja K-Means Dengan DSCAN Untuk Metode Clustering Data Penjualan Online Retail. Jurnal Siliwangi, 5(2), 72–77. http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/1283
Aziz, A. R., Warsito, B., & Prahutama, A. (2021). Pengaruh Transformasi Data Pada Metode Learning Vector Quantization Terhadap Akurasi Klasifikasi Diagnosis Penyakit Jantung. Jurnal Gaussian, 10(1), 21–30. https://doi.org/10.14710/j.gauss.v10i1.30933
Azriuddin, M., Kee, D. M. H., Hafizzudin, M., Fitri, M., Zakwan, M. A., AlSanousi, D., Kelpia, A., & Kurniawan, O. (2020). Becoming an International Brand: A Case Study of Starbucks. Journal of The Community Development in Asia, 3(1), 33–43. https://doi.org/10.32535/jcda.v3i1.706
Falakhi, A. (2023). Pengolahan Data Pelanggan Dengan Tenik Clustering K-Means Di Aplikasi Weka. Journal Computer Science and Informatic Systems J-Cosys, 3(2), 54. https://doi.org/10.53514/jco.v3i2.394
Ferretti, F., & Mariani, M. (2019). Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries. Globalization and Health, 15(1), 1–14. https://doi.org/10.1186/s12992-019-0474-x
Hapsari, R. K., Salim, A. H., Meilani, B. D., Indriyani, T., & Rachman, A. (2023). Comparison of the Normalization Method of Data in Classifying Brain Tumors with the k-NN Algorithm. The 2nd International Conference on Neural Networks and Machine Learning, 1, 21–29. https://doi.org/10.2991/978-94-6463-174-6_3
Nagari, S. S., & Inayati, L. (2020). Implementation of Clustering using K-Means Method To Determine Nutritional Status. Jurnal Biometrika Dan Kependudukan, 9(1), 62. https://doi.org/10.20473/jbk.v9i1.2020.62-68
Negara, M., Setyawan, I., Purwono, P., & Ashari, I. A. (2021). Analisa Cluster Data Transaksi Penjualan Minimarket Selama Pandemi Covid-19 dengan Algoritma K-means. JOINTECS (Journal of Information Technology and Computer Science), 6(3), 153. https://doi.org/10.31328/jointecs.v6i3.2693
Mulyana, A., Hermawan, Y., & Saputri, J. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Rekomendasi Pilihan Program Studi Pada Mahasiswa Baru. KERNEL : Jurnal Riset Inovasi Bidang Informatika Dan Pendidikan Informatika, 5(1), 60–72. https://doi.org/10.31284/j.kernel.2024.v5i1.7624
Mursalim, M., Purwanto, P., & Soeleman, M. A. (2021). Penentuan Centroid Awal Pada Algoritma K-Means Dengan Dynamic Artificial Chromosomes Genetic Algorithm Untuk Tuberculosis Dataset. Techno.Com, 20(1), 97–108. https://doi.org/10.33633/tc.v20i1.4230
Permana, A. W., Widayanti, S. M., Prabawati, S., & Setyabudi, D. A. (2017). Sifat Antioksidan Bubuk Kulit Buah Manggis (Garcinia Mangostana L.) Instan Dan Aplikasinya Untuk Minuman Fungsional. Jurnal Penelitian Pascapanen Pertanian, 9(2), 88. https://doi.org/10.21082/jpasca.v9n2.2012.88-95
Permana, I., & Salisah, F. N. S. (2022). Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), 2(1), 67–72. https://doi.org/10.57152/ijirse.v2i1.311
Pokpin, B. M., & Ng, S. W. (2021). Sugar-sweetened beverage taxes : Lessons to date and the future of taxation. PLOS Medicine, Januari, 1–6. https://doi.org/10.1371/journal.pmed.1003412
Revathi, V., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-Means Algorithm for Clustering of Learners Performance Levels Using Machine Learning Techniques. Revue d Intelligence Artificielle, 35(1), 99. https://doi.org/10.18280/ria.350112
Trianto, R. B., Nugroho, A. S., & Supriyadi, E. (2023). Klasterisasi Menggunakan Algoritma K-Means dan Elbow pada Opini Masyarakat Tentang Kebijakan Sekolah Luring Tahun 2022. INOVTEK Polbeng - Seri Informatika, 8(1), 1. https://doi.org/10.35314/isi.v8i1.2756
Uykan, Z. (2023). Fusion of Centroid-Based Clustering With Graph Clustering: An Expectation-Maximization-Based Hybrid Clustering. IEEE Transactions on Neural Networks and Learning Systems, 34(8), 4068–4082. https://doi.org/10.1109/TNNLS.2021.3121224
Yaumi, Ach. S., Zulfiqkar, Z., & Nugroho, A. (2020). Klasterisasi Karakter Konsumen Terhadap Kecenderungan Pemilihan Produk Menggunakan K-Means. JOINTECS (Journal of Information Technology and Computer Science), 5(3), 195. https://doi.org/10.31328/jointecs.v5i3.1523
Yucha, N., & Safitri, S. N. (2021). Pengaruh Bauran Pemasaran, Suasana Kafe dan Minat Beli Terhadap Keputusan Pembelian di Intano Coffe Shop and Roastery Krian. IQTISHADequity Jurnal MANAJEMEN, 3(1), 180. https://doi.org/10.51804/iej.v3i1.927
Zulfa, N., Auliya, R. I., & Zaenal, A. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI