Penerapan Algoritma DBSCAN Untuk Clustering Penjualan di Supermarket
Abstract
Supermarkets are shopping places that provide various daily necessities. Many customers visit supermarkets to buy necessities. The growth of supermarkets is increasing. Supermarkets have a variety of products with different brands, branches, and types of customers. To create a sales strategy, need to know the products that customers are interested in. In this research, supermarket product clustering was carried out based on sales data. The clustering algorithm used in this research is the DBSCAN algorithm. This algorithm is an algorithm for grouping data objects based on density, which is influenced by input parameters, namely the Eps and MinPts values. The data used in this research is secondary data consisting of 100 supermarket sales data, taking 2 attributes. The clustering results show that using the Eps parameter value = 6 and the MinPts value = 9, the product data is divided into 3 clusters, namely cluster 1 of products that are not in demand, cluster 2 of products that are in demand and cluster 3 of very popular products.
Downloads
References
Adha, N., Sianturi, L. T., & Siagian, E. R. (2017). IMPLEMENTASI DATA MINING PENJUALAN SABUN DENGAN MENGGUNAKAN METODE APRIORI ( Studi Kasus : PT. Unilever). Majalah Ilmiah INTI, 12(2), 219–223.
Ashari, B. S., Otniel, S. C., & Rianto. (2019). Perbandingan Kinerja K-Means Dengan DSCAN Untuk Metode Clustering Data Penjualan Online Retail. Jurnal Siliwangi, 5(2), 72–77. http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/1283
Bhattacharjee, P., & Mitra, P. (2021). A survey of density based clustering algorithms. Frontiers of Computer Science, 15(1). https://doi.org/10.1007/s11704-019-9059-3
Bhuyan, R., & Borah, S. (2013). A survey of some density based clustering techniques. Conference on Advancements in In- Formation, Computer and Communication, July. https://doi.org/10.13140/2.1.4554.6887
Devi, A. S., Putra, I. K. G. D., & Sukarsa, I. M. (2015). Implementasi Metode Clustering DBSCAN pada Proses Pengambilan Keputusan. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, 6(3), 185. https://doi.org/10.24843/lkjiti.2015.v06.i03.p05
Hardiani, T. (2022). Analisis Clustering Kasus COVID-19 Di Indonesia Menggunakan Algoritma K-Means. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 11(2), 156–165. https://doi.org/10.23887/janapati.v11i2.45376
Indini, D. P., Siburian, S. R., & Utomo, D. P. (2022). Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan. 325–331.
Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. Advanced Review, 1(3), 231–240. https://doi.org/10.1002/widm.30
Meilani, B. D., Hapsari, R. K., & Novian, I. F. (2021). Classification of community opinion on the use of the Transjakarta bus based on twitter social network using naïve bayes method. IOP Conference Series: Materials Science and Engineering, 1010(1). https://doi.org/10.1088/1757-899X/1010/1/012030
Nur, H. (2019). Penggunaan Metode Waterfall Dalam Rancang Bangun Sistem Informasi Penjualan. Generation Journal, 3(1), 1. https://doi.org/10.29407/gj.v3i1.12642
Rohalidyawati, W., Rahmawati, R., & Mustafid, M. (2020). Segmentasi Pelanggan E-Money Dengan Menggunakan Algoritma Dbscan (Density Based Spatial Clustering Applications With Noise) Di Provinsi Dki Jakarta. Jurnal Gaussian, 9(2), 162–169. https://doi.org/10.14710/j.gauss.v9i2.27818
Safitri, D., Wuryandari, T., & Rahmawati, R. (2017). Metode Dbscan Untuk Pengelompokan Kabupaten/Kota Di Provinsi Jawa Tengah Berdasarkan Produksi Padi Sawah Dan Padi Ladang. Statistika, 5(1), 8–13.
Sari, B. N., & Primajaya, A. (2019). Penerapan Clustering Dbscan Untuk Pertanian Padi Di Kabupaten Karawang. Jurnal Informatika Dan Komputer, 4(1), 28–34. www.mapcoordinates.net/en.
Sibuea, M. L., & Safta, A. (2017). Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustring. Jurteksi, 4(1), 85–92. https://doi.org/10.33330/jurteksi.v4i1.28
Sindi, S., Ningse, W. R. O., Sihombing, I. A., R.H.Zer, F. I., & Hartama, D. (2020). Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia. Jurnal Teknologi Informasi, 4(1), 166–173. https://doi.org/10.36294/jurti.v4i1.1296
Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24
Utomo, D. P., & Purba, B. (2019). Penerapan Datamining pada Data Gempa Bumi Terhadap Potensi Tsunami di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 846. https://doi.org/10.30645/senaris.v1i0.91
Zulfa, N., Auliya, R. I., & Zaenal, A. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
Article Metrics
Copyright (c) 2024 Rinci Kembang Hapsari, Talitha Naifa Audrey, Muhammad Amiruddin Widodo, Mitha Islamiyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.