Forecasting the Number of BMT NU Lenteng Branch Customers Using the Single Exponential Smoothing Method

Authors

  • Siti Munawwarah Universitas Annuqayah
  • Luluk Sarifah Universitas Annuqayah

DOI:

https://doi.org/10.31102/zeta.2025.10.1.11-18

Keywords:

BMT NU, customers, forecasting, Single Exponential Smoothing

Abstract

The presence of financial institutions greatly helps the country in terms of economy, including Islamic financial institutions such as BMT NU Lenteng Branch which was established in 2014. For BMT NU, the existence of customers greatly influences the continuity of the work process. Therefore, in order to facilitate the preparation of the next work plan, a customer forecasting technique is needed to determine the number of saving customers in the next period, which can fluctuate every year. For this study, data on the number of savers was used from 2014-2023, then for forecasting using the Single Exponential Smoothing method, a method that focuses on finding stability values. The advantage of this method lies in its ease of operation which is relatively simple. To determine the level of accuracy obtained from the forecasting results, the Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) methods are used. From the results of the research that has been carried out, it was found that the best alpha value for forecasting is at alpha 0,9 with a forecasting result of 10.065,3. The error calculation obtained for the last 10 years of data is MAD = 1.050,037676, MSE = 1.622.018,167, and MAPE = 25%. While for the last 5 years of data, MAD = 1.415,6342, MSE = 2.528.041,621, and MAPE = 19%.

Downloads

Download data is not yet available.

References

Ahmad, F. (2020). Penentuan Metode Peramalan Pada Produksi Part New Granada Bowl St di Pt.X. JISI: Jurnal Integrasi Sistem Industri, 7(1), 31. https://doi.org/10.24853/jisi.7.1.31-39

Faisol, F. & Aisyah, S. (2016). Penerapan Metode Exponential Smoothing untuk Peramalan Jumlah Klaim di BPJS Kesehatan Pamekasan. Jurnal Matematika MANTIK, 2(1), 46-51. https://doi.org/10.15642/mantik.2016.2.1.46-51

Fauziah, L., & Fauziah, F. (2022). Penerapan Metode Single Exponential Smoothing dan Moving Average Pada Prediksi Stock Produk Retail Berbasis Web. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 7(2), 159-168. https://doi.org/10.30998/string.v7i2.13932

Hariyono, Latipah, & Achmad Zakki Falani. (2017). Implementasi Metode Exponential Smoothing Sebagai Forecasting Permintaan Obat Pada Dinas Kesehatan Kota Surabaya. Insand Comtech : Information Science and Computer Technology Journal, 2(2), 1–8.

Hayuningtyas, R. Y., & Sari, R. (2021). Aplikasi Peramalan Alat Kesehatan Menggunakan Single Moving Average. Jurnal Infortech, 3(1), 40–45. https://doi.org/10.31294/infortech.v3i1.10397

Mahajan, S., Chen, L.-J., & Tsai, T.-C. (2018). Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis. Sensors, 18(10), 3223. https://doi.org/10.3390/s18103223

Meranti, I. D. I., & Yazid, A. A. (2021). Peran Baitul Mal Wat Tamwil dalam Mewujudkan Ekonomi Syariah yang Kompetitif. Economic : Jurnal Ekonomi Dan Hukum Islam, 12(01), 31–38. https://doi.org/10.59943/economic.v12i01.64

Nugroho Arif Sudibyo, Ardymulya Iswardani, Arif Wicaksono Septyanto, & Tyan Ganang Wicaksono. (2020). Prediksi Inflasi Di Indonesia Menggunakan Metode Moving Average, Single Exponential Smoothing Dan Double Exponential Smoothing. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 1(2), 123–129. https://doi.org/10.46306/lb.v1i2.25

Prapcoyo, H., & As’ad, M. (2022). the Forecasting of Monthly Inflation in Yogyakarta City Uses an Exponential Smoothing-State Space Model. International Journal of Economics, Business and Accounting Research (IJEBAR), 6(2), 800. https://doi.org/10.29040/ijebar.v6i2.4853

Pratama, D. A., Hidayati, S., Suroso, E., & Sartika, D. (2020). Analisis Peramalan Permintaan dan Pengendalian Persediaan Bahan Baku Pembantu pada Industri Gula (Studi Kasus PT. XYZ Lampung Utara) Analysis Forecasting Dem & Control of Supply Raw Materialsi In The Sugar Industry (Case Study of PT. XYZ North Lampung). Jurnal Penelitian Pertanian Terapan, 20(2), 148–160. http://www.jurnal.polinela.ac.id/JPPTeISSN2047-1781

Sarifah, L., Kamilah, S., & Khotijah, S. (2023). Penerapan Metode Single Moving Average Dalam Memprediksi Jumlah Penduduk Miskin Pada Perencanaan Pembangunan Daerah Kabupaten Pamekasan. Zeta - Math Journal, 8(2), 47–54. https://doi.org/10.31102/zeta.2023.8.2.47-54

Setiawan, I. (2021). Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Toko Barang XYZ. Jurnal Teknik Informatika, 13(3), 1–9.

Yadi, Y. (2024). PREDIKSI NASABAH KREDIT USAHA RAKYAT MENGGUNAKAN ALGORITMA C4.5. Networking Engineering Research Operation, 9(1), 1–8. https://doi.org/10.21107/nero.v9i1.25348

Yudanto, B. W., & Hartanto, B. (2022). Implementasi Metode Single Exponential Smoothing dalam Melakukan Perkiraan Stok Barang di Toko Makanan Ringan Berbasis Sistem Informasi. Journal of Economic, Management, Accounting and Technology, 5(2), 188–199. https://doi.org/10.32500/jematech.v5i2.2563

Zulhazmi, Z., & Auwalin, I. (2020). Peran Pembiayaan Terhadap Perkembangan Usaha Dan Peningkatan Kesejahteraan Anggota Baitul Maal Wat Tamwil. Jurnal Ekonomi Syariah Teori Dan Terapan, 7(3), 602. https://doi.org/10.20473/vol7iss20203pp602-609

Downloads

Published

2025-05-22

How to Cite

Munawwarah, S., & Sarifah, L. (2025). Forecasting the Number of BMT NU Lenteng Branch Customers Using the Single Exponential Smoothing Method. Zeta - Math Journal, 10(1), 11–18. https://doi.org/10.31102/zeta.2025.10.1.11-18

Issue

Section

Articles