Special Form Hankel Matrix Inverses (n+1)×(n+1),n≥3 With 2×2 Block Matrices
DOI:
https://doi.org/10.31102/zeta.2025.10.1.1-10Keywords:
Matrix block 2×2, Inverse, Hankel MatrixAbstract
This study aims to determine the inverse of a special form Hankel matrix using a block matrix. In this study, some steps are carried out. The first step will be given a special form Hankel matrix which will then be blocked into a block matrix. Next, determine the inverse of the invertible submatrix of the Hankel matrix so that the general form is obtained. The last step is seen from the inverse pattern of the two ways of blocking the Hankel matrix of the unique structure of order to so that the general shape of the inverse Hankel matrix of special form is obtained. The results obtained will be obtained in the general structure of the Hankel matrix inverse special form, using a block matrix.
Downloads
References
Aqilah, Zhafiratul. 2020. Invers Matriks Hankel Bentuk Khusus Ordo 3× 3 Berpangkat Bilangan Bulat Positif Menggunakan Adjoin. Universitas Islam Negeri Sultan Syarif Kasim Riau.
Fran, Ilhamsyah Helmi Fransiskus. n.d. “Determinan Dan Invers Matriks Blok 2× 2.” Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya 6(03).
Howard, Anton, and Chris Rorres. 2004. Aljabar Linear Elementer. Edisi Kede. Jakarta: Erlangga.
Irawan, Teddy. 2022. “Invers Matriks Toeplitz Bentuk Khusus N× n,(N≥ 3) Dengan Matriks Blok 2× 2.”
Lu, Tzon-Tzer, and Sheng-Hua Shiou. 2002. “Inverses of 2× 2 Block Matrices.” Computers & Mathematics with Applications 43(1–2):119–29.
Marzuki, Corry Corazon, and Fitri Aryani. 2019. “Invers Matriks Toeplitz Bentuk Khusus Menggunakan Metode Adjoin.” Jurnal Sains Matematika Dan Statistika 5(1):58–67.
Rahma, Ade Novia, Maura Anggelina, and Rahmawati Rahmawati. 2019. “Invers Matriks Blok 2× 2 Dalam Aplikasi Matriks FLDcircr Bentuk Khusus.” Pp. 334–44 in Seminar Nasional Teknologi Informasi Komunikasi dan Industri.
Redivo-Zaglia, M. 2004. “Pseudo-Schur Complements and Their Properties.” Applied Numerical Mathematics 50(3–4):511–19.
Yang, Sheng-Liang, and Yan-Ni Dong. 2018. “Hankel Determinants of The Generalized Factorials.” Indian Journal of Pure and Applied Mathematics 49(2):217–25.