IMPLEMENTASI SEDERHANA PREDIKSI CUACA DENGAN METODE REGRESI LINEAR DAN LOGIKA FUZZY
DOI:
https://doi.org/10.31102/jatim.v6i2.3293Keywords:
Weather prediction, Linear Regression Method, Fuzzy Logic, OctaveAbstract
Unpredictable weather changes in Medan City often cause significant impacts across various sectors such as transportation, health, and the economy. One of the most frequent consequences is flooding due to high and poorly predicted rainfall. Therefore, this study aims to develop a weather prediction model by combining Linear Regression and Fuzzy Logic methods to improve the accuracy of weather parameter predictions, such as temperature, humidity, and rainfall measured in oktas. Linear Regression is used to model the statistical relationships between weather variables based on historical data, while Fuzzy Logic is applied to handle the uncertainty in weather patterns that are often nonlinear and unpredictable. This study utilizes historical weather data obtained from the worldweatheronline.com website for the Medan City area. The data goes through several processing stages, including preprocessing to clean and normalize the data, modeling using Linear Regression to identify major trends in the dataset, and applying Fuzzy Logic to accommodate uncertainties in predictions. The developed model is then tested and validated to evaluate its performance compared to other conventional prediction methods. The model implementation is carried out using GNU Octave, which allows efficient numerical analysis and data modeling. The results show that the combination of Linear Regression and Fuzzy Logic improves the accuracy of weather predictions compared to using a single method. This model provides more stable and reliable prediction results, especially in handling extreme weather conditions that frequently occur in Medan City. With a more accurate prediction model, it is expected to assist the community, government, and policymakers in disaster mitigation, infrastructure planning, and strategic decision-making in facing dynamic weather changes
Downloads
References
[2] I. Haikim, A. Aisri, and T. Aifriliansyah, Implementasi algoritma komputasi linear regression untuk optimasi prediksi hasil pertanian, Keseatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 3, pp. 1423–1434, 2024.
[3] D. Jatikusumo and R. R. Hidayat, Optimasi penentuan lokasi bencana alam dengan regresi linier sederhana dan berbasis graf, Jurnal Informatika dan Teknik Elektro Terapain, vol. 12, no. 3S1, 2024.
[4] R. Limeihuweiy and S. H. Kotairumalos, Prediksi suhu udara rata-rata harian dengan metode regresi linier di kota Ambon, Tanah Goyang: Jurnal Geoscience, vol. 1, no. 1, pp. 18–25, 2023.
[5] N. Mahraini, Penggunaan aplikasi Octave sebagai alat bantu pembelajaran topik sistem persamaan linier, PENDIPAI Journal of Science Education, vol. 6, no. 2, pp. 451–456, 2022.
[6] F. Nurrohman, M. Arsyad, A. Susanto, and A. Prasetiyo, Perkiraan Intensitas Curah Hujan Menggunakan Metode Fuzzy Logic Berdasarkan Tipe Pola Hujan, Jurnal Fisika Unand, vol. 12, no. 3, pp. 402–409, 2023.
[7] Y. M. Sairi, W. Waifiqotissalaimah, and M. Thoriq, Implementasi Logika Fuzzy Mamdani dalam Prediksi Curah Hujan di Pesisir Selatan, Jurnal Teknologi Komputer, vol. 2, no. 1, pp. 25–34, 2025.
[8] N. Septiyani and A. Agoestanto, Penerapan logika fuzzy mamdani pada perkiraan cuaca harian di kabupaten Cilacap, in Prisma, Prosiding Seminar Nasional Matematika, vol. 6, pp. 786–795, 2023.
[9] M. Taiqiyuddin and T. B. Sasonko, Prediksi Cuaca Kabupaten Sleman Menggunakan Algoritma Random Forest, Jurnal Media Informatika Budidarma, vol. 8, no. 3, pp. 1683, 2024.
[10] M. Yusuf, A. Setiyanto, and K. Aryasa, Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression, J-SAIKTI: Jurnal Sains Komputer dan Informatika, vol. 6, no. 1, pp. 405–417, 2022.
_001.png)
1.png)

