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ABSTRAK

Misil atau peluru kendali merupakan salah satu contoh dari wahana nir awak(WANA) yang berupa senjata
roket militer yang bisa dikendalikan atau memiliki sistem pengendali otomatis untuk mencapai target atau
menyesuaikan arah. Kemampuan WANA yang bisa dikendalikan ini sangat menguntungkan bagi manusia
terutama dibidang pertahanan negara. Permasalahan pada misil ini adalah tentang optimasi untuk
mengendalikan gerak misil dan estimasi posisi misil untuk mengatur keberadaan misil agar tetap mengarah
pada target. Variabel yang dikendalikan adalah daya dorong dengan menggunakan kendali Bang-bangdan
yang diestimasi adalah lintasan misil dengan menggunakan metode Ensamble Kalman Filter(EnKF). untuk
bisa mengarah pada target. Hasil yang diperoleh dengan menggunakan kedua metode ini adalah estimasi

mendekati kondisi real karena memiliki Root Means Square(RMS) sangat kecil.

Kata Kunci: Misil, Optimasi, Estimasi, kendali bang-bang, EnKF.

1. PENDAHULUAN

Misil atau peluru kendali adalah senjata roket
militer yang bisa dikendalikan atau memiliki sistem
pengendali otomatis untuk mencari target atau
menyesuaikan arah. Misil adalah salah satu contoh
dari wahana nir awak (WANA) yang banyak
digunakan baik untuk kepentingan militer.
Kemampuan WANA yang bisa dikendalikan dari
jarak jauh atau bahkan bisa diprogram untuk terbang
sendiri dengan lintasan tertentu tentu sangat
menguntungkan bagi manusia. Keuntungan yang
bisa didapat antara lain biaya akan lebih efisien dan
meminimalisasi resiko bagi manusia.[9]

Kemajuan dalam dunia militer, sistem navigasi
yang berbasis GPS, dan teknik kendali penerbangan
telah digunakan pada misil dalam militer. Untuk ke
depannya, misil akan lebih otonom dari pada misil
saat ini yang masih dikendalikan dari dari jarak jauh.
Salah satu teknologi yang mulai dikembangkan saat
ini adalah optimasi pada gerakan misil dan
perencanaan lintasan dengan estimasi posisi. Sebuah
algoritma dari perencanaan lintasan akan
menghasilkan satu atau lebih lintasan yang aman
untuk misil. Lintasan tersebut harus merupakan
panjang minimal dan terlepas dari segala kendala
yang menghalangi. Karena misil —memiliki
kemampuan yang terbatas, maka waktu yang
dibutuhkan untuk melakukan terbang juga harus
dikurangi, sehingga panjang lintasan sangat
mempengaruhi dalam pembuatan algoritma. Selain
itu, lintasan harus bisa diikuti oleh misil.[3]

Lintasan misil dari permukaan-ke-permukaan
(surface-to-surface missile)dengan manuver akhir
menghunjam vertikal terbagi menjadi 3 sub-interval,
yaitu: tahap terbang bebas, menanjak dan

meminimumkan waktu terbang sehingga dapat
mencapai target

Permasalahan pada misil adalah keterbatasan
persediaan bahan bakar misil selama terbang. Hal ini
dapat diatasi dengan meminimumkan waktu terbang.
Sedangkan  masalah  yang kedua  adalah
mengestimasi posisi dari misil. Keduanya sangat
penting dalam misil. Ada banyak metode Kalman
filter yang digunakan untuk mengestimasi posisi
suatu gerak benda pada suatu lintasan (navigasi)
antara lain dengan menggunakan, Extended Kalman
filter (EKF), Unscented Kalman filter (UKF), dan
Ensemble Kalman Filter (EnKF). EnKF merupakan
pengembangan dari Kalman Filter yang ditemukan
oleh R.E. Kalman (1960), ilmuwan yang telah
mempublikasikan penelitiannya tentang solusi
rekursif dari masalah filtering linear dengan data
diskrit. Solusi rekursif yang menggunakan teknik
asimilasi data ini kemudian dikenal dengan istilah
Kalman Filter. Algoritma Kalman Filter memberikan
inspirasi bagi peneliti lain untuk membahas
pengembangan beserta aplikasinya, terutama dalam
masalah navigasi.

Pada paper ini dipaparkan pengendalian optimal
dilakukan pada daya dorong, sudut serang untuk
mendapatkan waktu tempuh optimum, dengan
menerapkan  Prinsip ~ Minimum  Pontryagin.
Sedangkan pada estimasi posisi misil berdasarkan
lintasan yang telah dibuat sehingga apabila dalam
perjalanan melewati lintasan terdapat gangguan atau
error maka misil tersebut bisa menghindarinya untuk
kemudian kembali pada lintasan yang telah didisain
agar bisa menuju target yang telah ditentukan.
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2. TINJAUAN PUSTAKA
2.1 Model dinamik misil

Sistem dinamik dari titik pusat massa peluru
kendali yang bergerak diberikan sebagai berikut[5]

. Tsina L cos
y=—+—cosoc—u (@8]
. Tcdsa-p L v

= ————sina — gsin 2
V=t s tsing —gsiny ()

)

Gambar 2.1Model gaya pada misil.[5]

dengan

t =waktu, t, <t < tf

t, = waktu awal

t; = waktu akhir

y = sudut penerbangan

V = kecepatan

x = posisi horizontal

h = ketinggian

T = gaya dorong

a = sudut tembak

T dan a adalah dua variabel kontrol (lihat
Gambar 2.1).

Gaya aerodinamik D dan L adalah fungsi — fungsi
dari ketinggian h, kelajuan V, dan sudut tembak

Gaya aerodinamik:

D(h,V,@) = CapV?Syer ©)

Cq=Aja? + Aya + A (6)

L = %pthSCLa 7
C,=Bia+B,

dengan p adalah densitas udara yang diberikan

oleh
p=Ch*+Ch+Cs ®)

Sres = daerah yang digunakan oleh misil

m = massa

g= konstanta gravitasi

Nilaid,, A,, Az, By, By, Cy, C,, dan Csadalah
konstanta seperti yang ditunjukkan pada Tabel 2.1.1.

Syarat batas

Syarat awal dan akhir untuk keempat variabel
state adalah sebagai berikut:

Tabel 2.1 Parameter fisik model|5]

y(0) = vo, v(t) = ve, (10a)
V(0) ="Vo, V(tr) =V, (10b)
x(0) = xo, x(tr) = x., (10¢)
h(0) = hy, h(ty) = he, (10d)

Kuantitas Nilai Satuan
G 9.81 m/s?
Ay -1.9431
A, -0.1499
Ag 0.2359
B; 21.9
B, 0
C, 3.312-107° kg/m?
C, 1.142-107* kg/m?
Cs 1.224 kg/m*

Dengan kendala didefinisikan sebagai berikut:
Vmin sV< Vmax (lla)
hin < h (11b)
Tmin < T < Thax (11¢)
Lmin = ng = Lmax (1 ld)

di mana L,;, dan L,,, adalah normal,
sebagaimana terlihat pada Tabel 2.2

Tabel 2.2 Syarat Batas dan Kendala

Kuantitas Nilai Satuan
Vinin " 250 m/s
Vinin 200 m/s
Vinax 310 m/s
Tonin 1000 N
Toax 6000 N
Ronin 30 M
Lmin -4 G
Lmax 4 G

2.2 Teori Pengendalian Optimal

Pada prinsipnya, tujuan dari pengendali optimal
adalah menentukan signal atau kendali yang akan
diproses dalam sistem dinamik (model) dan
memenuhi  beberapa konstrain, dengan tujuan
memaksimumkan atau meminimumkan fungsi
tujuan (J) yang sesuai [7]

Formulasi masalah kendali optimal diberikan

sebagai berikut. Misalkan suatu kendali dari sistem
dinamik yang diberikan oleh persamaan

x(@) = fx@®),u®),t)

Dengan keadaan awal x(t,) = x, dan kondisi
akhir x(t;) = xydan u(f) menyatakan pengontrol
keadaan pada waktu t. Dalam hal ini masalah kendali

optimal adalah mencari pengontrol optimal ©” yang
memenuhi persamaan kendali dengan syarat nilai J
yang berikut ini

tf
J = h(x(t). tr) +Jt g(x,u,t)de

0
Berikut ini  diberikan satu cara dalam

menyelesaikan masalah kendali optimal yang
diformulasikan sebelumnya dengan menggunakan
persamaan Hamiltonian yang disebut prinsip
Pontryagin. Langkah penyelesaiannya adalah
sebagai berikut[7]



Zeta — Math Journal
Volume 3 No. 01, Mei 2017

ISSN: 2459-9948
e-ISSN: 2579-5864

i. Bentuk Hamiltonian, yaitu
H(x,u,A,t) = g(x,u,t) + Af (x,u,t)

ii.  Selesaikan persamaan kendali

iH(x,u,}u,t) =0
ou

untuk memperoleh u* =u"(x, 4,1)
iii. Dapatkan Hamiltonian
H*(x,A,t)= H(x,u",A,1)

iv.  Selesaikan 2n persamaan
0 ..
() = —H" (x,A,1)
oA
dan Persamaan ko-state :
i) = - H"(x,2,1)
ox

dengan kondisi batas diberikan oleh keadaan
awal dan keadaan akhir.
v. Substitusikan hasil-hasil dari langkah (iv)

kedalam persamaan u” untuk memperoleh

kendali optimal yang dicari.

2.3  Metode Kalman Filter

Metode Kalman Filter (KF) secara umum
digunakan untuk mengestimasi variabel state x; €
R™ dari sistem dinamik stokastik linear[1][2]

Xjev1 = ArXy + By + Gewy (12)
dengan pengukuran z;, € RP yang memenuhi
Zy = Hkxk + (47 (13)

untuk z, € RPadalah variabel input yang diberikan
secara deterministik. Variabel w;, € R dan v, € RP
masing-masing menyatakan noise sistem dan noise
pengukuran. Kedua variabel ini diasumsikan white,
tidak berkorelasi satu sama lain maupun dengan nilai
estimasi awal X, dan mempunyai distribusi peluang
normal. Jika variansi dari w;, adalah @, dan variansi
dari v, adalah R), maka dipenuhi w, = 0, 7, =0,
ww! = Qy, dan v, vl = R). Dalam hal ini simbol
garis di atas (overbar) menunjuk pada pengertian
nilai ekspektasi atau mean dari suatu variabel
random. Dengan  demikian, dapat dituliskan
~ N(0, Q) dan v~ N(0, Ry).

Di dalam [4] telah disebutkan bahwa efek sistem
dinamik terhadap nilai mean dan kovariansi dari x;,
dan z;,. Untuk mean dari state x;, dapat dituliskan
Xps1 = Apxy + Brug + Gpwy

= Akfk + Bkﬁk + kak
Karena noise proses wy, adalah white, maka dipenuhi
wy = 0. Sedangkan, u;, adalah variabel input yang

deterministik, sehingga berlaku #, = u,. Oleh
karena itu, didapat
X1 = Ay + Bruy (14)

Bentuk X,,, pada persamaan (14) sekaligus juga
menggambarkan nilai dari variabel estimasi Xy 4.

Untuk menentukan kovariansi dari state X,
dapat dituliskan

ka+1 = (xk+1 -

Hre+1) K1 — Xer)T

= [Ax O — X)) + Gewi][A O — %) + Grew] ™.
Bentuk terakhir ini identik dengan
A Gt — %) (o — BT A" + Gewge (. — i) TA,”
+ A G — ZOWT G, "
+ GkaWTGkT
Sehingga diperoleh
Pey = AP A" + GiPop A’ +
AkkakakT + G QG
Dengan mengingat bahwa x; dan wy tidak
berkorelasi (yaitu berarti By, x, = Pyw, = 0), maka

didapat

KXk
Peprr = AP Al + GrQiG" (15)
Dalam hal ini juga telah disebutkan bahwa nilai
kovariansi dari state x;, sama dengan nilai kovariansi
errornya [4]. Dengan demikian, persamaan (15)
sekaligus juga menunjukkan nilai dari kovariansi
error state x.
Z_k = Hkxk + Vi = kak + ﬁk
Karena v, adalah white, maka didapat
Zy = HyXy (16)
Sedangkan kovariansi dari pengukuran
P, = (2 — Zi) (2 — 2 )"
= [He (o — %) + v [Hy (o — %) + v ]”
Dengan mengingat asumsi bahwa x;, dan v,
tidak berkorelasi, maka didapat
P, = Hy Py H{ + Ry (17)
Sedangkan, kovariansi antara state x;, dan output
7, adalah
Pz = (o — %) (21 — 21"
= (e — %) [Hi (e — 1) + v ]”
yaitu didapatkan
Puz, = Py, + Hi (18)
Dari persamaan (16) — (17) dapat disimpulkan
bahwa distribusi variabel random gabungan x;, dan
7, adalah

~<[ ][szxk kkk])

atau
Iikxk] 11 1 Ji + R
.X'k kfxp''k k

19)

Di bagian lain [3] juga disebutkan bahwa
estimator linear terbaik untuk variabel random x;
jika diberikan X, P, e dan pengukuran z; adalah

Py, = (Po + Hi R H) ™! (20)
Rie = %y + Py HiRi ' (2 — Hi%) (1)

Dengan X, menyatakan estimasi untuk x;, dan
X = (x; — X;) adalah error estimasinya.

Proses estimasi dengan menggunakan Kalman
Filter terbagi dalam dua tahap, yaitu tahap time
update dan tahap measurement update. Tahap time
update (atau tahap prediksi) dipengaruhi oleh
dinamika sistem; sedangkan tahap
measurementupdate (atau  tahap koreksi)
dipengaruhi oleh adanya informasi tambahan berupa
pengukuran. Pada tahap time update didefinisikan
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estimasi state X, € R™ yang sering disebut variabel
priori state estimate; sedangkan estimasi state Xj €
R™(yang disebut juga posteriori state estimate)
didefinisikan pada tahap measurement update. Dari
persamaan (14), (15), (20), dan (21) dapat diturunkan
suatu algoritma Kalman Filter untuk mengestimasi
variabel state X, sebagaimana diringkaskan pada
Tabel 2.3. Untuk time step k = 0, diperlukan nilai
state awal X, dan kovariansi error P yang
menggambarkan tingkat kepercayaan terhadap nilai
estimasi state awal.

Nilai estimasi tahap measurement update
bergantung pada residual atau measurement
innovationZ,, = (z;, — Hixy). Koefisien
pembobotan dari residual tersebut seringkali disebut
Kalman Gain, yaitu
Kk =P kH ]’5 R}:]'

Jika terjadi kasus det (Py,,) = 0, maka nilai
(P7+1) 'pada tahap measurement update di Tabel
2.2.1 tidak dapat ditentukan. Oleh karena itu [3] juga
telah menyebutkan bentuk alternatif dari tahap
measurement update dengan melibatkan pengertian
Kalman gain, yaitu
Kir1 = PyrHigor (Hieo1 Py Hir + Ripr) ™
(2.2.11)

Peyr = (I = Kyr1 Hier 1) Py (22.12)

Rr+1 = Rpr + Kier1(Zirr — Her1%is1)
(22)

Bentuk alternatif ini lebih menguntungkan dari
segi komputasi karena hanya memuat satu proses
menginverskan matriks ukuran p xp. Sedangkan
bentuk sebelumnya pada Tabel 2.2 memuat dua
proses menginverskan matriks ukuran n X n, yang
mana biasanya ukuran # lebih besar dari p.

Tabel 2.3 Algoritma Kalman Filter (KF)

Model sistem dan model pengukuran
X1 = Akxk + Bkuk + Gka
Zy = H kXK + Vi
xo~ N (%o, Qi) Wi~ N (0, Qi), v~ N (0, Ry)

Inisialisasi
Py =P, dan %, = %,
Tahap time update:
Kovariansi error: Pg,, = A P AL + G, Q,GT
Estimasi: Xiep1 = A&y + Bruyg

Tahap measurement update:
Kovariansi error:

Pesr = [(Per) ™ + Hiyq Rict i Hyed] ™
Estimasi:

PN e T -1 a—
Rier1 = Xpr + PrsrHir1Rici1 (Ziesr — Hies1 Xicr1)

2.2 Metode Ensamble Kalman Filter

Metode Ensemble Kalman filter (EnKF)
pertama kali dikembangkan oleh G. Evensen (1992-
1993) pada saat mencoba mengimplementasikan
metode EKF untuk asimilasi data pada suatu model.
Metode Linearised Kalman filter (LKF) secara
komputasi lebih menguntungkan daripada EKF.
Namun proses linearisi ternyata menyebabkan
kovariansi errornya membesar menuju tak hingga

[5]. Selanjutnya G. Evensen memperkenalkan ide
penggunaan sejumlah ensemble untuk mengestimasi
kovariansi error pada tahap forecasting pada masalah
yang sama. Bersama Burgers dan van Leeuwen
(1998), Evensen merumuskan skema analisis dalam
metode yang dinamakan Ensemble Kalman Filter
(EnKF). Dalam hal ini telah ditunjukkan adanya
korespondensi yang unik antara statistika error
dalam EnKF dan dalam Kalman Filter standar [3][6].

Metode EnKF dijalankan dengan
membangkitkan sejumlah ensemble yang merupakan
representasi dari variabel state. Ensemble tersebut
mempunyai mean sesuai dengan tebakan awal,
misalkan Xx,. Berdasarkan eksperimen, pada
umumnya jumlah anggota ensemble yang
mencukupi adalah 100 — 500 [3].

Misalkan diberikan model stokastik nonlinear
X = f(Xpm1, Upe—1) + Wiy (23)
dan pengukuran linear z,, € RP yang memenuhi
Zy = ka + Vg. (24)

Misalkan dibangkitkan sejumlah N, ensemble
dari realisasi model pada time step ke-k, yaitu
[Xk 1 Xk 2Xk3 - xk,Ns]

Maka dari ensemble yang telah dibangkitkan
diperoleh nilai mean X; dan kovariansi error Py,
yaitu

R = 1 Do X (25)
dan
P = g S Gons = 20 Goe = 2)"
Ng—1 i=1 S k k,i k
(26)

Bentuk formula pada persamaan (5) akan
digunakan untuk menghitung nilai estimasi X, pada
tahap time wupdate maupun X; pada tahap
measurement update dalam algoritma EnKF.
Sedangkan bentuk formula (26) digunakan untuk
menghitung kovariansi error P, pada tahap time
update. Algoritma EnKF selengkapnya untuk
mengestimasi penyelesaian model (23) dan (24)
dapat dilihat pada Tabel 2.4.

Dalam hal ini perlu diperhatikan bahwa
algoritma EnKF tidak membutuhkan nilai awal
kovariansi error. Sedangkan nilai awal %, dihitung
dari nilai rata-rata ensemble X,; yang dibangkitkan
pada tahap inisialisasi. Demikian juga, noise sistem
wy; pada tahap time update dan noise pengukuran
v,; pada tahap measurement update dibangkitkan
dalam bentuk ensemble.

Tabel 2.4 Algoritma Ensemble Kalman Filter
(EnKF)

Model sistem dan model pengukuran
Xr1 = f (0 ug) + wy
z = Hx, + vy,
wi~ N (0, @), v~ N(0, Ry)
Inisialisasi
- Bangkitkan N, ensemble sesuai dengan
tebakan awal x,
(X1 Xk, 2Xk3
Tentukan nilai awal:

xk,Ns]
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Tahap time update:
R = f Rpm1y Up—1) + W
dengan wy ;~N(0,Q)

1 N, ~o
N_Ezi=1xk,i

- Estimasi: X, =

- Kovariansi error:

N

1 s— _ a\(o— _ >\T
Z(xk,i = X5 ) (X — X))
i=1

P, =
k Ns_l.

Tahap measurement update:
Zy; =z + vy; dengan v, ;~N(0,Ry)
- Kalmangain: K, =P;HT(HP;HT + R,)™*
- Estimasi: Ri = X + Ki (2, — HXy ;)

Ne
. 1 Z .
= — X1, :
Xk N, . ’ ki
i=
- Kovariansi error: P, = [I — K, H|P;

3. PEMBAHASAN
3.1 Penyelesaian Pengendalian Optimal
Fungsi tujuan dari permasalahan ini adalah
J= fttof dt, dengan ¢ adalah waktu dan t, <t <

t; dengan t, adalah waktu awal dan t; waktu akhir.
Bentuk fungi Hamiltonian dari permaalahan ini
adalah H = f + A'x schingga diperoleh

H=1 +Av (Tcosa—D_

L. .

Lsina— gsmy) +

Tsina L gcosy

Ay (_mV +oycosa——— ) +
Ay(wcosy) + A (vsiny)

27

1. Mendapatkan kondisi stasioner
Dapat dituliskan dengan g—: denganu = [T a]’

Maka diperoleh

OH dy o Ay o
aT_ cosa sina =
oH

==
(T sina +%pv25(231 + By) asina +
—-= a+
m (Bla+ )acosa
B,

Ay 1.2
E((T cosa +-pv S{(2B;a +

B,) cosa — sina (Bya? + Bza) =0 (28)

2. Mendapatkan co-state

. : oH
Persamaan co-state diperoleh dengan A = ~x

dengan X = [v y x h]’ sehingga diperoleh

. y
Ay =-— —/lvgcosy—%gcosy

— Ay siny + 4, cos y)

. A )
Ay = — (W (Tsina + vaCd)) cosa

g . .
—ﬁsmy + A, cosy + A, siny

A, =0

. p) 2
A, = — ((ﬁ (2C;h + C)v2SCy + 2L (20,h +
C,)v*S(B,a + B,) cos (Z)) + A cosy +

Ay sin y)(29)
3. Mendapatkan persamaan state
Persamaan state diperoleh dari model persamaan

(1)-(4), sehingga X = [vyxh]

Dari langkah 1-3 terdapat satu permasalahan
yaitu kendali 7' . Dalam persamaan Hamiltonian
kendali 7 muncul secara linear sechingga kendali T
optimal tidak dapat ditentukan pada kondisi
stasionernya. Dikarenakan kendali T adalah terbatas,

maka dapat ditetapkan Hamiltonian yang
minimum
seperti dibawah ini[4]:
0H
Tmaks , ﬁ <0
0H
T = Tsingular rﬁ =0
0H
Tinim T =

Fungsi Switching didefinisikan dari kondisi

stasioner pada langkah pertama. Sehingga
a—H=’1—"coso:+ﬂsin0(=0 30)
oT m mv
Pada persamaaan (30) kendali 7 tidak muncul
sehinga perlu diturunkan secara parsial terhadap
waktu sehingga diperoleh

Hr

o dt
ly:;iy” sina =0 31)
Dengan menggunakan persamaan (31) maka
akan didapatkan kendali 7 karena pada A, kendali T
kembali muncul.Untuk selanjutnya akan dibuktikan
apakah kendali T syarat untuk dikatakan sebagai
busur singular. Dan selanjutnya akan dibangun
sebuah matriks Generalisasi Legendre-Clebsch.

2
Zcosa +
m

0 dH;y 09%H 0°H

T dt 0adT dPaT

| o*H 0*H 0%H

Y| 9adT  92a 09da

0%H 0°H 0%H

000T  0Pda  3%0
Elemen-elemen dari matriks Generalisasi

Legendre-Clebsch yang tidak ada yang sama ataupun
berlainan tanda. Sehingga kendali T tidak ada di
busur singularnya. Hal ini selanjutnya akan
dibuktikan melalui simulasi.
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Parameter Nilai satuan
m 1000 Kg
g 10 m/sz
S 0.34 m?

Ay -2
A, -0.15
A 0.23
B; 22
B, 0,00001
Cy 3.32x 10 g/m‘S
C. -1.02x 107* k
2 g/m_4,
C 1200 k
3 g/m_g

Sedangkan nilai syarat batas yang diberikan[5]
v(0) = 275,21™/,,y(0) = 0.523333 radian
x(0) = 0 meter, h(0) = 31 meter

Tmaks = 6000 N, Tminim =1000 N
3.2  Diskritisasi Model
Untuk melakukan estimasi posisi terlebih
dahulu dilakukan diskritaisasi dari model diperoleh
Vi+1

Vit
Xk+1
s
Tsina L g cos yk)
+— - At +

( mv, mv, T Ty, Vi

_ (Tcosa—D L . . )At+V

- —sina — gsinyy &

(V cos yr)At + x;,
(Vk sin ]/k)At + hk
Gaya D bergantung pada nilai Cydan V.
Sedangkan C; bergantung pada besar a dan p
bergantung pada /. Sehingga didapatkan
Pr = Clhi + Cth + C3Cdk = Alaﬁ +A2ak +A3
dan
1
D(h,V,a), = ECakPkaSref
Kemudian, gaya L bergantung pada nilai C; ,p dan
V.
1
Clk = Blak + BzL(h, V, a’)k = EClkkakZSTef
Dengan demikian untuk k = 0
pO = Clhg + Czho + C3
CdO = Al(?(g + Azao + A3
1
D(h’ v, a)O = E Cd()pOVOST‘ef
CIO = Blao + Bz

1
L(h,V,a), = ECLOPOVOZSTef

Sehingga diperoleh

V1
Vi
X1
hy
Tsina, Ly g cos yo)
+— - At +
( mvy  my, % T Ty, Yo

_|(Tcosag—Dy Ly . .
= (T o, Sind—g smyo) At +V,
(Vg cosyg)At + x4
(Vo sinyg)At + hy
Dengan melakukan diterasi secara terus-menerus
diperoleh
Yn+1
Vﬁ+1
Xn+1
hn+1
r Ly g cosyy,
(mVn sina, + v, cosa, 7

Tcosa, —D, L, . .
= (——Esman—gsmyn)At+Vn

)At+yn

m
(W, cos yp)AL + x,,
(V, siny,)At + hy,
Jika dituliskan secara lengkap untuk k =
1,2,3, ...,n, maka model diskrit secara umum dapat
dituliskan ke dalam bentuk fungsi nonlinear

X1 = f O U)

3.3 Penambahan Faktor Stokastik

Model misil masih  dalam  bentuk
deterministik. Oleh karena itu, harus ditamahkan
faktor stokastik dalam bentuk noise pada masing-
masing persamaan. Dengan demikian didapatkan
model stokastik

Xerr = [ (e W) + Wiz = Hxy + vy
dengan f (x, u; ) adalah fungsi nonlinear.

Noise sistem w;, dan noise pengukuran v,
dalam hal ini dibangkitkan melalui komputer dan
biasanya diambil berdistribusi normal serta
mempunyai mean nol [2]. Secara umum variansi
noise sistem dinyatakan dengan Q, dan variansi
noise pengukuran dinyatakan dengan Ry, yaitu
keduanya bergantung pada waktu.

3.4 Implementasi Metode Ensamble Kalman

Filter

yang harus dilakukan adalah mendefinisikan
X, yaitu

X=[y V x hI"
kemudian memberikan nilai awal untuk masing-
masing variabel yaitu nilai posisi sudut (y,),
kecepatan (V;), posisi pada sumbu-x (x,) dan
ketinggian (h). Hal ini bisa ditulis
Xo=o Vo x hol”
Model sistem

Xier1 = f (Ko wi) + wy
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Yi+1
Vier1
Xk+1
hiea A L
. k g cos Vk)
——sinay + ——cosa;, — At +
(ka k mV, k Ve

_|/Tcosay, —D, Ly . )
= (T oy Sinax—g smyk) At + Vy
(V cosyr)At + x;
(Vk sin yk)At + hk
+ wy
Dengan w;, adalah noise sistem yang
berdistribusi normal dengan mean (rata-rata) nol dan

varians Q, wi~ N(0, Q).

Model Pengukuran
Jika posisi mendatar merupakan variabel yang
bisa diukur maka digunakan matriks pengukuran H
sebagai berikut
H=[0 0 1 0]
Sehingga diperoleh persamaan pengukuran z
adalah

Zk=HXk+Uk

14

— 4
Zk—[O 0 1 0] x +Uk

h

Dengan v, adalah noise sistem yang berdistribusi
normal dengan mean (rata-rata) nol dan varians R,
wi~ N(O, Ry).

Inisialisasi

Inisialisasi pada EnKF terlebih dahulu harus
dilakukan pembangkitan sejumah ensemble sesuai
tebakan nilai awal untuk masing —masing state
dengan memberikan noise sistem.

Yo Wi,
V() + Wy i
X0 W3 i

hO W4’ i

KXii =

i=1.23,.., N,

Kemudian dari nilai X, ; hingga X; v akan
dikumpulan sehingga didapatkan matriks kolom
berukuran  (4x1) sejumlah ensemble yang
dibangkitkan sehingga didapatkan sebuah matriks
berukuran (4xN)

[Xi1Xie2Xiez - Xiew,]

Yo+ Wi1¥o +WipVo+ Wiz Yot Win,
Vo +wy1Vo +wy,V+wys Vo +wan,
Xo + W3 1Xg + W3X0 + W33 ™ X+ W3 N,
ho + wy1hg + wyohg + wys ho +wyy,

Selanjutnya adalah mencari nilai rata-rata
setiap state dari pembangkitan ensemble

1
X'o = AS = EZIXO,L‘
=

. [Yo T Wi1Yo + Wi2Yo + Wi Yot Win,
_ 1 Vo +wy1Vo +wy,Vo +wys Vo +wan,
- Ezl Xo + W3 1Xg + W32X0 + W3 ™ X + Wy,
“Hho + wyrho + wyshg +wys  hg+ Wy,

Tahap Prediksi
Tahap Prediksi pada EnKF mula-mula
dihitung nilai prediksi dengan menggunakan nilai X,
kemudian ditambahkan noise sistem wy,.

Koo = F(Kpemr ) + wiey

V-1 Wy )zk—l + Wi
_ Vit n Wail _ V-1 +wy;
Xy-1 W3, R—1 +ws,;
ﬁk—1 Wai iik—l T Wy

Menghitung nilai estimasi pada tahap prediksi
Nilai estimasi pada tahap prediksi
didapatkan dengan perhitungan sebagai berikut

Ne

o 1 o

X = N_gz X
=1

Kemudian dicari nilai error estimasi dengan cara
menghitung selisih antara nilai prediksi dengan rata-
rata estimasi. Jika niai error ini dilambangkan
dengan £ maka didapatkan

E =X —X;¢
Dimana nilai £ ini akan digunakan untuk
menghitung nilai kovarian error.

Menghitung nilai kovarian error pada tahap
prediksi

Kovarian error pada tahap prediksi disimbolkan
dengan Py . Nilai ini didapatkan dengan mengalikan
nilai £ dengan ET kemudian dicari rata-ratanya.

1 <

Py = EEET
N - 14
1=

Ne
1 — G-\(P— - \T
— > R~ 2R~ %)

N, 11’ 4

Tahap Koreksi

Pada tahap ini terlebih dahulu dihitung data
pengukuran z;, ; yang merupakan duplikasi dari data
pengukuran pada sistem real yaitu z;, ditambah noise
pengukuran. Secara sederhana dapat dituliskan
seagai berikut

Zyi = Zg t Vg,

Langkah selanjutnya adalah menghitung Kalman

Gain. Kalman Gain dihitung
K, = P;HT(HP;HT + R)™!

Dengan P, adalah kovarian error pada tahap
prediksi, H adalah matriks pengukuran, dan Ry
adalah kovarian pada noise pengukuran.

Kemudian dihitung nilai estimasi koreksi dengan
persamaaan:
Ryi = Rpey + Ky (2 — HXpcy)
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Dengan £ ; adalah nilai estimasi pada tahap
prediksi, K adalah Kalman Gain, z;; adalah data
pengukuran pada tahap koreksi, dan H adalah
matriks pengukuran.

Setelah didapatkan nilai estimasi koreksi,
selanjutanya adalah menghitung rata-rata estimasi

koreksi dengan :
Ne
o 1 Z o
k Ne ' ki
i=1

Nilai  inilah  yang  digunakan  untuk
membandingkan hasil estimasi dari metode EnKF
dengan nilai sebenarnya.

Untuk menghitung kovariansi error pada tahap
koreksi (P;) dengan persamaan :

P, = [ — K HP;
3.5 Simulasi

Simulasi pertama akan dilakukan dengan
ketinggian tempat peluncuran 100 meter dan
kecepatan yang digunakan adalah 250 ms™! dan 300
ms™L.

ey

ok —w
! B

[ 3 5 i s -
e

Gambar 4: perubahan ketinggian saat peluncuran
Dari hasil ini dapat dilihat bahwa keadaaan akhir
dari misil dipengaruhi oleh kecepatan awal misil dan
ketinggian saat melakukan peluncuran. Sedangkan
variable kendali yang ada menunjukkan tak ada
perubahan selamameluncur sehingga keadaan akhir
dari misil tidak terpengaruh dengan daya dorongnya.

3.6  Simulasi Estimasi Posisi
Dalam simulasi ini, nilai awal yang

digunakan adalah

Yo = 0 * /180 rad;

Vo = 250 m/s dan 300;

ho = 100 m; dan

xXo =0

Sedangkan ensamble yang dibangkitkan adalah
sebanya 500 dan 100 ensamble

Dari hasil simulasi yang telah dilakukan,
didapatkan kondisi yang cocok untuk mengestimasi
posisi misil pada lintasannya dengan menggunakan

metode Ensemble Kalman Filter pada input sudut a
yang tetap. Kondisi yang cocok ini dilihat dari besar
error RMS yang kecil serta kemampuannya untuk
mengestimasi nilai dari setiap parameter.

Gambar 5 memperlihatkan hasil estimasi posisi
misil dengan asumsi alat ukur diberikan pada posisi
sudut yang dimulai dengan ketinggian awal 0 meter
dan mencapai ketinggian maksimal pada 573 meter
dan pada ketinggian 250 meter misil mulai
menurun/menghunjam ke target. Simulasi ini
dilakukan dengan membangkitkan sebanyak 500
buah ensemble. Pada gambar tersebut terlihat bahwa
hasil estimasi terbaik hanya berlaku pada posisi
sudut, sedangkan parameter lainnya seperti
kecepatan, posisi mendatar, danketinggian tidak bisa
didapatkan hasil estimasi yang baik. Dengan nilai
RMS sebagai berikut
RMS Error pada gamma = 0.038352
RMS Error pada kecepatan = 1.7638
RMS Error pada x=0.20936

RMS Error pada ketinggian = 0.22284
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Gambar 5: estimasi kecepatan, posisi dan
ketinggian dengan membangkitkan ensamble
sebanyak 500
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Gambar 6: estimasi kecepatan, posisi dan
ketinggian dengan membangkitkan ensamble
sebanyak 1000
Gambar 6 memperlihatkan hasil estimasi
posisi misil dengan asumsi alat ukur diberikan pada
posisi sudut dimulai dengan ketinggian awal 100
meter dan mencapai ketinggian maksimal pada 482
meter dan pada ketinggian 678 meter misil mulai
menurun/menghunjam ke target. Simulasi ini
dilakukan dengan membangkitkan sebanyak 1000
buah ensemble. Pada gambar tersebut terlihat bahwa
hasil estimasi terbaik hanya berlaku pada posisi
sudut, sedangkan parameter lainnya seperti
kecepatan, posisi horizontal, danketinggian tidak
bisa didapatkan hasil estimasi yang baik. Dengan
nilai RMS sebagai berikut

RMS Error pada gamma = 0.03444
RMS Error pada kecepatan = 1.9261
RMS Error pada x = 0.18871

RMS Error pada ketinggian = 0.2133

4. KESIMPULAN
Analisis dan pembahasan yang telah dilakukan
maka dapat ditarik kesimpulan sebagai berikut:

1. Berdasarkan  spembahasan maka  dapat
disimpulkan untuk simulasi dengan batasan
waktu 100 detik bahwa keadaan atau szate akhir
dipengaruhi oleh ketinggian tempat peluncuran
misil dan kecepatan awal. Sehingga untuk
mendapatkan lintasan yang optimal harus
memperhatikan ketinggian tempat peluncuran
misil dan kecepatan awal.

2. Metode Ensemble Kalman Filter bisa digunakan
untuk mengestimasi lintasan misil sehingga bisa
diketahui arah pergerakannya.

3. Pada kondisi nilai « tetap.

Selama iterasi, hasil estimasi akan didapatkan
dengan baik jika kecepatan (v) merupakan
parameter yang bisa diukur. Jika parameter yang
bisa diukur adalah hanya pada posisi sudut (y),
ketinggian (h), atau posisi horizontal (x) maka
tidak didapatkan hasil estimasi yang baik. Hasil
estimasi akan jauh lebih baik jika seluruh

parameter bisa diukur dengan membangkitkan
sebanyak 500 dan 1000 buah ensemble.
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