Analisis Insider Threat pada Sistem Keamanan Rumah Cerdas Menggunakan Malicious Traffic Monitoring
Abstract
Ancaman serangan siber semakin banyak dan kompleks, berdasarkan catatan Badan Siber dan Sandi Negara (BSSN) bahwa di Indonesia pada tahun 2022 terdapat anomali trafik atau malicious traffic ratusan juta. Berdasarkan sumber ancaman maka dapat serangan siber dapat dikategorikan serangan siber yang bersumber dari internal (insider threat) dan serangan siber yang bersumber dari luar (outsider threat). Saat ini serangan siber tidak hanya dari luar atau outsider karena serangan siber dapat bersumber dari perangkat yang digunakan atau kebiasaan pengguna dalam mengakses internet. Untuk mendeteksi ancaman serangan siber pada ekosistem rumah cerdas menggunakan penelitian ini mengadopsi metode Network Development Life Cycle (NDLC). Berdasarkan hasil analisis pada ekosistem rumah memungkinkan diterapkan teknik port mirroring pada router. Sehingga pada perancangan mengggunakan Miktorik dan MalTrail sebagai sensor deteksi malicious traffic untuk mengetahui aktivitas anomali. Hasil dari penelitian ini menunjukan bahwa ancaman serangan siber yang bersumber dari internal dapat disebabkan dari kebiasaan pengguna dalam mengakses internet. Sedangkan perangkat cerdas yang terpasang dalam penelitian ini tidak ditemukan adanya malicious traffic atau aktivitas anomali. Maka penelitian ini masih perlu dilakukan improvisasi menggunakan teknik network packet capture.
Downloads
References
[2] F. A. Saputra, M. Salman, J. A. N. Hasim, I. U. Nadhori, and K. Ramli, “The Next-Generation NIDS Platform: Cloud-Based Snort NIDS Using Containers and Big Data,” Big Data Cogn. Comput., vol. 6, no. 1, p. 19, Feb. 2022, doi: 10.3390/bdcc6010019.
[3] E. Haryanto and I. Riadi, “Forensik Internet Of Things pada Device Level berbasis Embedded System,” J. Teknol. Inf. Dan Ilmu Komput., vol. 6, no. 6, p. 703, Dec. 2019, doi: 10.25126/jtiik.2019661828.
[4] T. G. Palla and S. Tayeb, “Intelligent Mirai Malware Detection in IoT Devices,” in 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA: IEEE, May 2021, pp. 0420–0426. doi: 10.1109/AIIoT52608.2021.9454215.
[5] M. Snehi and A. Bhandari, “Apprehending Mirai Botnet Philosophy and Smart Learning Models for IoT-DDoS Detection,” 2021.
[6] S. Madan, S. Sofat, and D. Bansal, “Tools and Techniques for Collection and Analysis of Internet-of-Things malware: A systematic state-of-art review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 9867–9888, Nov. 2022, doi: 10.1016/j.jksuci.2021.12.016.
[7] S. Chaipa, E. K. Ngassam, and S. Shawren, “Towards a New Taxonomy of Insider Threats,” in 2022 IST-Africa Conference (IST-Africa), Ireland: IEEE, May 2022, pp. 1–10. doi: 10.23919/IST-Africa56635.2022.9845581.
[8] J. Kim and H. Chang, “An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention,” in 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of: IEEE, Oct. 2022, pp. 611–613. doi: 10.1109/ICTC55196.2022.9952395.
[9] J. R. Schoenherr, “Insider Threats and Individual Differences: Intention and Unintentional Motivations,” IEEE Trans. Technol. Soc., vol. 3, no. 3, pp. 175–184, Sep. 2022, doi: 10.1109/TTS.2022.3192767.
[10] A. Borys, A. Kamruzzaman, H. N. Thakur, J. C. Brickley, M. L. Ali, and K. Thakur, “An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet,” in 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA: IEEE, Jun. 2022, pp. 725–729. doi: 10.1109/AIIoT54504.2022.9817163.
[11] Badan Siber dan Sandi Negara, “Lanskap Keamanan Siber Indonesia 2022,” Badan Siber dan Sandi Negara.
[12] E. Alomari, S. Manickam, B. B. Gupta, P. Singh, and M. Anbar, “Design, deployment and use of HTTP-based botnet (HBB) testbed,” in 16th International Conference on Advanced Communication Technology, Pyeongchang, Korea (South): Global IT Research Institute (GIRI), Feb. 2014, pp. 1265–1269. doi: 10.1109/ICACT.2014.6779162.
[13] Lockheed Martin Corporation, “Seven Ways to Apply the Cyber Kill Chain with a Threat Intelligence Platform,” Lockheed Martin Corporation, 2015.
[14] A. I. Wicaksono, R. Sahtyawan, and D. Hariyadi, “Network Forensic of Cryptocurrency Miners,” Compiler, vol. 11, no. 2, p. 97, Dec. 2022, doi: 10.28989/compiler.v11i2.1369.
[15] D. Siswanto, G. Priyandoko, N. Tjahjono, R. S. Putri, N. B. Sabela, and M. I. Muzakki, “Development of Information and Communication Technology Infrastructure in School using an Approach of the Network Development Life Cycle Method,” J. Phys. Conf. Ser., vol. 1908, no. 1, p. 012026, Jun. 2021, doi: 10.1088/1742-6596/1908/1/012026.
[16] D. Hariyadi, M. A. Nugroho, C. B. Setiwan, and A. I. Wicaksono, “Hybrid Acquisition pada Forensik Digital Berbasis ISO/IEC 27037:2012 Menggunakan Port Mirroring dan Single Board Computer,” J. Inf. Syst. Manag. JOISM, vol. 5, no. 1, 2023.
[17] A. N. Cahyo, R. Hidayat, and D. Adhipta, “Performance Comparison of Intrusion Detection System-based Anomaly Detection using Artificial Neural Network and Support Vector Machine,” presented at the Proceedings of The 12th International Conference on Synchrotron Radiation Instrumentation – SRI2015, New York, NY USA, 2016, p. 070011. doi: 10.1063/1.4958506.
[18] M. Sahrom Abu, S. Rahayu Selamat, A. Ariffin, and R. Yusof, “Cyber Threat Intelligence – Issue and Challenges,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 1, p. 371, Apr. 2018, doi: 10.11591/ijeecs.v10.i1.pp371-379.
[19] W. Zhang, Y. Zhang, H. Fan, Y. Gao, and W. Dong, “A Low-code Development Framework for Cloud-native Edge Systems,” ACM Trans. Internet Technol., vol. 23, no. 1, pp. 1–22, Feb. 2023, doi: 10.1145/3563215.