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ABSTRACT

Accurate and timely classification of brain tumors from Magnetic Resonance Imaging (MRI) is critical for
effective treatment planning. The advent of deep learning has revolutionized medical image analysis; however,
the performance of different model architectures is highly dependent on the quality of benchmark datasets and the
specifics of the training methodology. This study presents a rigorous comparative analysis of four prominent deep
learning architectures (ResNet18, EfficientNet-B0, MobileNetV3-Small, and the hybrid convolutional-transformer
model MobileViTV2) for multi-class brain tumor classification. The models were trained and evaluated on the
BRISC dataset, a large-scale and balanced collection of 6,000 T1-weighted contrast-enhanced MRI scans
comprising glioma, meningioma, pituitary, and no-tumor classes. Employing a 5-fold cross-validation protocol
with a full fine-tuning strategy and robust regularization techniques, this study evaluates the models in terms of
both classification accuracy and computational efficiency. The results indicate that MobileViTV2, ResNet18, and
EfficientNet-BO achieve statistically comparable state-of-the-art performance, with mean test accuracies of
98.88%, 98.72%, and 98.72%, respectively. MobileNetV3-Small, while being the most parameter-efficient,
demonstrated significantly lower accuracy at 96.94%. A key finding reveals a performance-efficiency paradox, in
which the largest model, ResNet18, exhibited the fastest inference latency (2.83 ms), challenging the conventional
assumption that fewer parameters directly translate into greater speed. This comprehensive analysis underscores
the strengths of hybrid architectures and provides critical insights into the practical trade-offs among model
complexity, accuracy, and real-world deployability for clinical decision support systems.

Keywords: Brain Tumor Classification, Convolutional-Transformer, Magnetic Resonance Imaging, BRISC
dataset

ABSTRAK

Klasifikasi tumor otak yang akurat dan tepat waktu dari hasil Magnetic Resonance Imaging (MRI) sangat
penting untuk perencanaan pengobatan yang efektif. Kemunculan deep learning telah merevolusi analisis citra
medis, namun kinerja dari berbagai arsitektur model sangat bergantung pada kualitas dataset acuan (benchmark)
dan spesifikasi metodologi pelatihannya. Studi ini menyajikan analisis perbandingan yang teliti terhadap empat
arsitektur deep learning terkemuka (ResNetl8, EfficientNet-BO, MobileNetV3-Small, dan model hibryd
convolusional-transformer MobileViTV2) untuk klasifikasi tumor otak multikelas. Model-model tersebut dilatih
dan dievaluasi menggunakan dataset BRISC, sebuah koleksi data skala besar dan seimbang yang terdiri dari
6.000 pindaian MRI T1-weighted dengan peningkat kontras, yang mencakup kelas glioma, meningioma, pituitari,
dan tanpa tumor. Dengan menggunakan protokol validasi silang 5-lipat (5-fold cross-validation), strategi fine-
tuning penuh, dan teknik regularisasi yang andal, studi ini menilai model berdasarkan akurasi klasifikasi dan
efisiensi komputasi. Hasil penelitian menunjukkan bahwa MobileViTV2, ResNetl8, dan EfficientNet-B0 mencapai
kinerja canggih (state-of-the-art) yang sebanding secara statistik, dengan rata-rata akurasi pengujian masing-
masing sebesar 98,88%, 98,72%, dan 98,72%. Sementara itu, MobileNetV3-Small, yang merupakan model paling
efisien dari segi parameter, menunjukkan akurasi yang jauh lebih rendah, yaitu 96,94%. Sebuah temuan kunci
mengungkapkan adanya paradoks kinerja-efisiensi, di mana model terbesar, ResNetl8, justru menunjukkan
latensi inferensi tercepat (2,83 ms). Hal ini menantang asumsi konvensional bahwa jumlah parameter yang lebih
sedikit berbanding Iurus dengan kecepatan yang lebih tinggi. Analisis komprehensif ini menggarisbawahi
kekuatan arsitektur hibrida dan memberikan wawasan penting mengenai trade-off praktis antara kompleksitas
model, akurasi, dan kemampuan penerapan di dunia nyata untuk sistem pendukung keputusan klinis.

Keywords: Klasifikasi Tumor Otak, Convolutional-Transformer, Magnetic Resonance Imaging, BRISC dataset

1. INTRODUCTION

Brain tumors represent a significant global health challenge and are a primary cause of cancer-related
mortality [1]. For both primary and metastatic brain tumors, an accurate and early diagnosis is paramount, as it
directly influences the selection of therapeutic strategies, surgical planning, and ultimately, patient prognosis and
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survival rates [2], [3]. In this clinical context, Magnetic Resonance Imaging (MRI) has been established as the
gold-standard non-invasive diagnostic modality [2], [4]. Its exceptional soft-tissue contrast provides detailed
anatomical visualization of brain structures, enabling the characterization of a tumor's location, size, and extent
[4].

Despite its utility, the manual interpretation of MRI scans by radiologists is a complex, time-consuming
task susceptible to human error and significant inter-observer variability [2], [5], [6]. The increasing volume of
medical imaging data further exacerbates these challenges, creating a critical need for automated, reliable, and
efficient diagnostic support systems [7].

The field of medical image analysis has been transformed by the application of deep learning, particularly
Convolutional Neural Networks (CNNs) [4], [7], [8]. CNNs have demonstrated a remarkable ability to
automatically learn hierarchical feature representations directly from pixel data, obviating the need for manual
feature engineering and setting new performance benchmarks in diagnostic tasks [2], [9]. The evolution of CNN
architectures has progressed from foundational models like VGG and ResNet to highly optimized variants such as
EfficientNet and MobileNet, which focus on improving the trade-off between accuracy and computational
efficiency [1], [10], [11].

More recently, Vision Transformers (ViTs) have emerged as a powerful alternative to CNNs [12]. By
employing a self-attention mechanism, ViTs can model long-range dependencies and capture global context across
an entire image, overcoming the inherent limitation of the local receptive fields in standard convolutional
operations [13], [14]. This capability is particularly relevant for medical imaging, where diagnostic information
may be encoded in the spatial relationships between distant regions. The current state-of-the-art is trending towards
hybrid architectures that combine the strengths of both paradigms: leveraging CNNs for robust local feature
extraction and ViTs for global contextual understanding [15], [16]. This hybrid approach is exemplified by models
like MobileViTV2, which integrates these concepts into an efficient framework [17].

The rapid advancement of these sophisticated deep learning models is fundamentally dependent on the
availability of large-scale, high-quality, and meticulously annotated datasets. While several public datasets have
facilitated progress, they are not without limitations. For instance, the widely used BraTS benchmark focuses
primarily on gliomas and often utilizes pre-processed, standardized data, which may not reflect the variability of
real-world clinical imaging and can limit the generalizability of trained models. Other resources, such as the
Figshare dataset, have been noted to suffer from class imbalance and a lack of diversity in patient demographics
and imaging conditions, which can restrict model robustness [18].

To address these shortcomings, this study utilizes the recently introduced BRISC dataset. This modern
benchmark was specifically curated to provide a more robust and clinically relevant platform for developing and
evaluating neuro-oncological Al models. Its key advantages include a large scale (6,000 T1-weighted contrast-
enhanced MRI scans), a balanced distribution across four clinically significant classes (glioma, meningioma,
pituitary, and no tumor), and high-quality annotations validated by certified radiologists. The inclusion of a "no
tumor" class and multiple common tumor types makes it an ideal testbed for developing general-purpose
classification models [18].

The primary contribution of this paper is a rigorous and systematic empirical comparison of four distinct
deep learning architectures for brain tumor classification on the BRISC dataset. The selected models represent a
spectrum of design philosophies:

1. ResNetl8: A classic, robust CNN architecture.

2. EfficientNet-B0O: A state-of-the-art CNN optimized for accuracy and efficiency.

3. MobileNetV3-Small: A lightweight CNN designed for resource-constrained environments.
4. MobileViTV2: A modern hybrid CNN-Transformer architecture.

A crucial aspect of the methodology is the adoption of a full fine-tuning strategy, wherein all layers of the
pre-trained models were unfrozen and trained on the target dataset. This approach was chosen to comprehensively
evaluate the adaptability of ImageNet-derived features to the specific domain of brain MRI analysis. The scope of
this study extends beyond mere classification accuracy to include a holistic evaluation of computational efficiency,
encompassing parameters, FLOPs, and real-world inference latency. Furthermore, the statistical significance of
performance differences is rigorously assessed to provide robust conclusions about the relative merits of each
architecture.

2. MATERIAL AND METHODS
2.1. DATASET DESCRIPTION

This study utilizes the BRISC 2025 dataset, a high-quality collection of expert-annotated Magnetic
Resonance Imaging (MRI) images of brain tumors. This dataset was specifically designed to address several
limitations found in previously available datasets, such as class imbalance and annotation inconsistencies, making
it highly suitable for training reliable classification models [18].

The BRISC 2025 dataset comprises a total of 6,000 T1-weighted contrast-enhanced MRI images, curated
from a combination of three sources: Figshare, SARTAJ, and Br35H. The images underwent a meticulous review
and re-annotation process by certified radiologists to ensure high quality and diagnostic accuracy. For the
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classification task, all images are categorized into four distinct classes: Glioma, Meningioma, Pituitary and No
Tumor. Each image in the dataset is presented in one of three anatomical planes: axial, coronal, or sagittal. This
diversity in planes is intended to ensure that the developed model is robust and not dependent on the image
acquisition orientation [18].

The dataset is carefully partitioned into two separate sets: 5,000 images for training and 1,000 images for
testing. This division ensures an objective evaluation of the model's performance. The sample distribution for each
class across the different MRI planes is summarized in the table below. This table demonstrates that the class
distribution is kept relatively balanced in both the training and testing sets, which is crucial for preventing bias
during the model training process [18].

Table 1. Class Distribution Based on MRI Planes in the BRISC 2025 Dataset

Class/Plane - Train - - Test -
Axial Coronal Sagittal Axial Coronal Sagittal
Glioma 347 428 372 85 81 88
Meningioma 423 426 480 134 89 83
Pituitary 428 496 533 116 98 86
No Tumor 352 310 405 52 48 40
Total Per Plane 1550 1660 1790 387 316 297
Total 5000 1000

Although the BRISC 2025 dataset also provides pixel-wise segmentation masks for each image, this study
focuses solely on the image classification task. Therefore, the data used consists of the raw MRI images and their
corresponding class labels, without utilizing the segmentation mask information [18].

Glioma

Meningioma Pituitary No_tumor

Axial

Coronal

Sagittal

Figure 1. Sample Image for Each Class and Planes

Figure 1 displays representative T1-weighted contrast-enhanced MRI scans for each of the four classes in
the BRISC dataset. The images illustrate the distinct morphological characteristics that the models must learn to
differentiate. Glioma tumors often present with irregular borders and heterogeneous signal intensity, reflecting
their infiltrative nature. Meningiomas typically appear as well-circumscribed, dural-based masses with
homogenous contrast enhancement. Pituitary tumors are localized to the sella turcica and present as distinct
masses. The "no tumor” class includes scans of healthy brain tissue, which serve as a crucial negative control for
training robust classifiers. The visual diversity within and between classes underscores the complexity of the
classification task [18].

2.2 MODEL ARCHITECTURES

For this study, four pre-trained deep learning models were selected to represent diverse architectural
paradigms. This selection aims to evaluate how different approaches—ranging from conventional CNNs to
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efficient hybrid architectures—impact performance on the brain tumor classification task. The details of each
model are summarized in the table below.

Table 2. Comparison of the Model Architectures Used

Model Core Key Features & Components Primary Advantage & Use Case
Architecture Paradigm
ResNet18 [19] Deep Residual Utilizes "shortcut connections" Fundamental & Robust: Prevents the
Network to allow gradients to flow more vanishing gradient problem, enabling the

EfficientNet-BO Compound

easily to deeper layers.

Introduces a balanced scaling

training of very deep networks. It often
serves as a strong baseline in various
computer vision tasks.

Optimal Balance: Achieves state-of-the-art

[20] Scaling method for network depth, accuracy with significantly fewer parameters
width, and resolution and computational resources compared to
simultaneously. other models.

MobileNetV3- Lightweight Built upon depthwise separable Efficient & Fast: Specifically designed for

Small [21] Mobile convolutions, inverted residual resource-constrained devices (e.g., mobile

Architecture blocks, and squeeze-and-excite phones). It offers very low computational

MobileViTV2  Hybrid CNN-
[22] Transformer

modules.

Combines convolutions (for
local features) with MobileViT
blocks that use separable self-
attention (for global features).

cost  while
performance.

Local & Global: Capable of efficiently
learning both local and global feature
relationships within a single lightweight
framework, combining the strengths of

maintaining ~ competitive

CNNs and Vision Transformers (ViTs).

2.3. EXPERIMENTAL PROTOCOL

The experiments were conducted in a reproducible and systematic manner to ensure a fair comparison.
a) Framework and Hardware: All models were implemented using the PyTorch deep learning framework
[23]. The training and evaluation were performed in a Kaggle environment equipped with two NVIDIA
Tesla T4 GPUs, enabling parallel training strategies.
Cross-Validation: A 5-fold cross-validation scheme was employed on the 5,000 training images. This
process involves splitting the data into five equal folds, training the model five times with each fold
serving once as the validation set, and averaging the results. This ensures that the reported performance
is robust and less sensitive to the particularities of a single data split.
¢) Training Strategy: A full fine-tuning approach was used for all models. The weights of each model, pre-
trained on the ImageNet dataset, were unfrozen, allowing all parameters to be updated during training.
This strategy tests the model's capacity to adapt its learned features to the specific domain of brain MRI
classification.
Hyperparameters: The training process for all models was standardized using the hyperparameters
specified in Table 3.

b)

d)

Table 3. Training Hyperparameters

Parameter Value Parameter Value

Input Image Size 2242 Scheduler Cosine Annealing [24]
Batch Size 128 (64 per GPU) Learning Rate 5 x 107*

Number of Epochs 50 + 5 warmup epoch Weight Decay 1 x 107*

Optimizer AdamW [25] K-Folds 5

2.4 DATA AUGMENTATION AND REGULARIZATION

To enhance model generalization and prevent overfitting, several regularization techniques were applied
during training.
a) Mixup [26]: This data augmentation technique generates new training samples by linearly interpolating
between two existing samples and their corresponding labels. A new sample (¥, ¥) is formed from two
samples (x;,y;) and (x;, y;) as follows:
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A
5=y + (1 -y M

where the mixing coefficient 4 is drawn from a Beta distribution, 1 ~ Beta(a, a), with « set to 0.2.

b) Label Smoothing [27]: This regularization technique discourages the model from making overconfident
predictions by replacing hard one-hot labels with smoothed labels. For a given class k and a total of K
classes, the new label yj, is calculated from the original one-hot label y, using a smoothing parameter €:

€
Ve =yl —€) + 2
In this experiment, € was set to 0.001 and K was 4.

¢) Dropout [28]: A dropout layer with a probability of 0.2 was added to the final classifier head of each model.
This technique randomly sets a fraction of neuron activations to zero during training, preventing complex
co-adaptations between neurons.

2.5. EVALUATION METRICS AND STATISTICAL ANALYSIS

Model performance was assessed using a combination of classification and efficiency metrics.

a) Classification Metrics: Performance was evaluated using standard metrics: Accuracy (overall correct
predictions), Precision (positive predictive value), Recall (sensitivity), and the macro-averaged F1-Score
(harmonic mean of precision and recall, averaged across all classes) [29].

b) Efficiency Metrics: Computational cost was measured by: Total Parameters (number of trainable weights),
Model Size (storage space in MB), FLOPs (floating-point operations, a measure of theoretical complexity),
and Inference Time (latency in ms for a single-batch prediction on the specified hardware).

c) Statistical Analysis: To determine if performance differences were statistically meaningful, a one-way
Analysis of Variance (ANOVA) and a non-parametric Friedman test were first applied to the distribution
of test accuracies from the 5-fold cross-validation. Subsequently, post-hoc pairwise comparisons were
conducted using paired t-tests to identify significant differences between specific model pairs. A p-value
less than 0.05 was considered statistically significant.

3. RESULTS
3.1. OVERALL CLASSIFICATION PERFORMANCE

The comparative performance of the four architectures, evaluated using 5-fold cross-validation, is
summarized in Table 3. The results indicate that three of the four models achieved exceptionally high and closely
matched classification accuracy.

Table 3: Overall Model Performance (5-Fold Cross-Validation)

Model Test Accuracy Validation Macro Precision Macro Recall Macro F1-Score

Accuracy

MobileViTV2 0.9888 + 0.0025 0.9944 + 0.0014 0.9879 + 0.0031 0.9904 £ 0.0023 0.9891 + 0.0026
ResNet18 0.9872 + 0.0010 0.9904 + 0.0019 0.9883 +0.0013 0.9886 + 0.0010 0.9884 + 0.0011
EfficientNet-BO ~ 0.9872 4+ 0.0038 0.9920 + 0.0025 0.9875 + 0.0037 0.9880 + 0.0035 0.9877 + 0.0036
MobileNetV3- 0.9694 £+ 0.0053 0.9742 + 0.0055 0.9672 + 0.0072 0.9730 £ 0.0054 0.9698 + 0.0061

Small

MobileViTV2 emerged as the top-performing model with a mean test accuracy of 98.88%. It was followed
almost identically by ResNetl8 and EfficientNet-BO, both achieving a mean test accuracy of 98.72%.
MobileNetV3-Small, while still performing well, registered a noticeably lower mean test accuracy of 96.94%. The
low standard deviations across all metrics for the top three models suggest stable and consistent performance
across the different data folds.

3.2. COMPUTATIONAL AND EFFICIENCY ANALYSIS
An analysis of the computational requirements and efficiency of each model reveals significant
architectural trade-offs, as detailed in Table 4. MobileNetV3-Small is unequivocally the most lightweight model,

with only 1.5M parameters and a 5.94 MB footprint. In contrast, ResNet18 is the largest, with over 7 times more
parameters and a model size 7 times greater than MobileNetV3-Small.
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Table 4: Model Efficiency and Computational Cost

Model Total Parameters Size (MB) GFLOPs Inference Time (ms)
MobileNetV3-Small 1,521,956 5.94 0.056 5.52
EfficientNet-BO 4,012,672 15.59 0.385 8.67
MobileViTV2 4,390,893 16.91 1.412 9.26
ResNet18 11,178,564 42.72 1.824 2.83

However, a counter-intuitive relationship between theoretical complexity (FLOPs) and practical speed
(Inference Time) was observed. ResNet18, despite having the highest FLOPs, recorded the fastest inference time
at just 2.83 ms. Conversely, MobileViTV2, with fewer FLOPs than ResNet18, was the slowest at 9.26 ms. This
suggests that factors such as architectural design and hardware-level optimization play a more significant role in
determining real-world latency than theoretical operational counts alone.

3.3. ERROR AND MISCLASSIFICATION ANALYSIS

An analysis of the aggregated confusion matrices (Figure 2) from the cross-validation revealed specific
patterns of misclassification for each model, highlighting their respective strengths and weaknesses.
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Figure 2. Confusion Matrices
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1) MobileNetV3-Small: The most frequent error was the misclassification of meningioma as pituitary tumors,
occurring in 35 instances. This suggests difficulty in distinguishing between these two often similarly

appearing tumor types.

2) ResNetl8: The most common error was misclassifying no-tumor scans as meningioma (18 instances). This
may indicate that the model is sensitive to subtle anatomical variations or artifacts in the meninges that

mimic early-stage tumors.

3) MobileViTV2: This model also struggled most with confusing meningioma for pituitary tumors, but did
so with the lowest frequency among all models (13 instances), indicating greater robustness in

differentiating these classes.
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4) EfficientNet-B0: Its primary confusion was misclassifying glioma as meningioma (21 instances), pointing
to a potential challenge in distinguishing between the infiltrative boundaries of gliomas and the more well-
defined appearance of meningiomas.

Overall, the top-performing models, particularly MobileViTV2, made fewer critical errors, suggesting a
more nuanced understanding of the distinguishing features between clinically similar tumor types.

3.4. STATISTICAL SIGNIFICANCE OF RESULTS
Statistical analysis was performed to validate the observed performance differences.

a) Overall Difference: Both the ANOVA test (F(3,16) = 24.21,p < 0.001) and the Friedman test
(x%(3) = 9.37,p = 0.0248) confirmed that there were statistically significant differences in the mean
test accuracies across the four models.

b) Pairwise Differences: Post-hoc paired t-tests revealed that the performance of MobileNetV3-Small was
significantly lower than that of ResNet18 (p = 0.004), MobileViTV2 (p = 0.006), and EfficientNet-B0O
(p = 0.009). However, no statistically significant differences were found in the pairwise comparisons
among the top three models: ResNet18, MobileViTV2, and EfficientNet-B0 (all p > 0.05). This indicates
that these three models form a top tier of performance on this specific task and dataset.

4. DISCUSSION

4.1. INTERPRETATION OF FINDINGS: HYBRID VIT VS. PURE CNNS

The results demonstrate that modern CNNs and hybrid architectures can achieve state-of-the-art
performance in brain tumor classification. While the top three models were statistically indistinguishable in terms
of accuracy, the slight numerical advantage of MobileViTV2 is noteworthy. Its hybrid design, which integrates
the local feature extraction capabilities of convolutions with the global context modeling of transformers, is
theoretically well-suited for medical imaging [15], [17]. Tumors are characterized not only by their internal texture
and cellular structure (local features) but also by their shape, mass effect, and relationship to surrounding
anatomical structures (global features). The self-attention mechanism in MobileViTV2 allows it to weigh the
importance of features across the entire image, potentially enabling a more holistic understanding than purely
convolutional approaches [13]. The model's lower number of critical meningioma — pituitary misclassifications
further supports the notion that its global context awareness may help resolve ambiguities between tumor types
that appear in similar locations.

4.2. THE PERFORMANCE VS. EFFICIENCY TRADE-OFF

This study uncovered a critical and non-linear relationship between theoretical model complexity and
practical inference speed. The most striking finding is the performance of ResNetl8, which, despite being the
largest model by parameter count, size, and FLOPs, was the fastest in single-batch inference. This paradox can be
attributed to the deep optimization of standard 3x3 convolutions within GPU-accelerated libraries like cuDNN
[30]. In contrast, newer architectures like MobileNetV3 and MobileViTV2 rely on less common operations such
as depthwise separable convolutions and attention mechanisms. While these operations reduce the theoretical
FLOP count, they can lead to increased memory access costs or less optimized execution paths on current
hardware, resulting in higher real-world latency [31]. This finding serves as a crucial reminder that for clinical
deployment, theoretical efficiency metrics like FLOPs are not a substitute for empirical benchmarking on the target
hardware [32]. ResNet18, despite its size, may represent a highly practical choice where low latency is a primary
concern.

4.3. IMPACT OF THE FULL FINE-TUNING STRATEGY

The experiment's use of a full fine-tuning strategy, where all pre-trained layers were unfrozen, proved
highly effective. The high accuracies achieved by all models, coupled with the low performance gap between
validation and test sets (indicating good generalization), suggest that this approach is well-suited for medical
imaging tasks when a moderately large dataset (i.e., several thousand images) is available. The success of this
strategy was likely enabled by the strong regularization techniques employed—Mixup, Label Smoothing, and
Dropout—which collectively prevented the models from overfitting despite their large number of trainable
parameters. This finding is valuable from a practical standpoint, as it simplifies the training pipeline by removing
the need for complex, staged unfreezing protocols, making state-of-the-art model training more accessible

4.4. CLINICAL RELEVANCE OF ERROR PATTERNS

The misclassification patterns observed in the results are not random but reflect known diagnostic
challenges in neuroradiology. The confusion between meningioma and pituitary tumors, seen in multiple models,
is clinically plausible as both can present as well-circumscribed, contrast-enhancing masses at the base of the skull
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[33]. Similarly, the confusion of no-tumor scans with meningioma by ResNet18 could stem from the model's high
sensitivity to subtle, benign thickening of the meninges, which can mimic early-stage pathology [34]. The fact that
the models' failure modes align with human diagnostic ambiguities suggests that they are learning clinically
relevant radiological features. This reinforces their potential as diagnostic aids but also highlights the need for
future work, such as incorporating multi-modal MRI sequences (e.g., T2-weighted or FLAIR) to provide
complementary information that could help resolve these specific ambiguities [35], [36].

4.5. CONTEXTUALIZATION WITH EXISTING LITERATURE

The high accuracies achieved in this study, with top models exceeding 98.7%, are consistent with and
advance the findings of recent literature in the field. Several studies utilizing CNN architectures like ResNet and
EfficientNet on similar multi-class brain tumor datasets have reported accuracies in the 95-99% range [4], [8],
[37], [38]. The superior performance of the hybrid MobileViTV2 aligns with a growing body of research
demonstrating the advantages of transformer-based models in medical imaging, which are increasingly
outperforming traditional CNNs by effectively capturing global dependencies [13], [14]. This study therefore
validates these broader trends on a new, large-scale, and balanced benchmark dataset.

4.6 LIMITATIONS AND FUTURE WORK

This study has several limitations that provide avenues for future research. First, the analysis was conducted
on a single, albeit high-quality, dataset (BRISC). Validating the findings on external, multi-institutional datasets
is necessary to confirm the generalizability of the models. Second, only T1-weighted contrast-enhanced MRI scans
were used [39], [40]. Future work should explore multi-modal fusion, incorporating T2-weighted, FLAIR, and
other sequences, which could provide complementary information to resolve diagnostic ambiguities [41].
Additionally, while full fine-tuning was effective, a comparative study against other training strategies, such as
progressive unfreezing [42], could yield further insights into optimal knowledge transfer. Finally, this was a
retrospective study; the ultimate validation of any diagnostic model requires prospective clinical trials to assess its
real-world impact on clinical workflows and patient outcomes [43], [44].

5. CONCLUSION

This study conducted a comprehensive comparative analysis of four deep learning models for multi-class
brain tumor classification on the BRISC dataset. The findings demonstrate that the hybrid vision transformer
architecture, MobileViTV2, and the established CNNs, ResNetl8 and EfficientNet-BO, achieve statistically
equivalent, state-of-the-art performance with test accuracies approaching 99%. While MobileNetV3-Small offers
significant advantages in model size and parameter count, its lower accuracy makes it less suitable for this high-
stakes diagnostic task.

The analysis revealed a crucial performance-efficiency paradox, where the model with the highest
theoretical complexity, ResNet18, yielded the lowest practical inference latency, highlighting the importance of
empirical hardware-specific testing over reliance on theoretical metrics like FLOPs for deployment decisions.
Furthermore, the success of a full fine-tuning strategy, supported by robust regularization, validates it as a powerful
and straightforward approach for adapting pre-trained models to medical imaging tasks with moderately large
datasets. The models' error patterns were found to be clinically relevant, reinforcing their potential as diagnostic
aids while also pinpointing areas for future improvement. Ultimately, this work validates the BRISC dataset as a
robust benchmark and confirms that both advanced CNNs and hybrid transformer architectures are capable of
achieving exceptional accuracy in brain tumor classification, paving the way for more reliable automated tools in
clinical neuro-oncologyConclusion is statement referring to the purpose linked research with results and
Discussion from research.
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