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ABSTRACT 

Accurate and timely classification of brain tumors from Magnetic Resonance Imaging (MRI) is critical for 
effective treatment planning. The advent of deep learning has revolutionized medical image analysis; however, 
the performance of different model architectures is highly dependent on the quality of benchmark datasets and the 
specifics of the training methodology. This study presents a rigorous comparative analysis of four prominent deep 
learning architectures (ResNet18, EfficientNet-B0, MobileNetV3-Small, and the hybrid convolutional-transformer 
model MobileViTV2) for multi-class brain tumor classification. The models were trained and evaluated on the 
BRISC dataset, a large-scale and balanced collection of 6,000 T1-weighted contrast-enhanced MRI scans 
comprising glioma, meningioma, pituitary, and no-tumor classes. Employing a 5-fold cross-validation protocol 
with a full fine-tuning strategy and robust regularization techniques, this study evaluates the models in terms of 
both classification accuracy and computational efficiency. The results indicate that MobileViTV2, ResNet18, and 
EfficientNet-B0 achieve statistically comparable state-of-the-art performance, with mean test accuracies of 
98.88%, 98.72%, and 98.72%, respectively. MobileNetV3-Small, while being the most parameter-efficient, 
demonstrated significantly lower accuracy at 96.94%. A key finding reveals a performance-efficiency paradox, in 
which the largest model, ResNet18, exhibited the fastest inference latency (2.83 ms), challenging the conventional 
assumption that fewer parameters directly translate into greater speed. This comprehensive analysis underscores 
the strengths of hybrid architectures and provides critical insights into the practical trade-offs among model 
complexity, accuracy, and real-world deployability for clinical decision support systems. 
 
Keywords: Brain Tumor Classification, Convolutional-Transformer, Magnetic Resonance Imaging, BRISC 
dataset 
 

ABSTRAK 

Klasifikasi tumor otak yang akurat dan tepat waktu dari hasil Magnetic Resonance Imaging (MRI) sangat 

penting untuk perencanaan pengobatan yang efektif. Kemunculan deep learning telah merevolusi analisis citra 

medis, namun kinerja dari berbagai arsitektur model sangat bergantung pada kualitas dataset acuan (benchmark) 

dan spesifikasi metodologi pelatihannya. Studi ini menyajikan analisis perbandingan yang teliti terhadap empat 

arsitektur deep learning terkemuka (ResNet18, EfficientNet-B0, MobileNetV3-Small, dan model hibryd 

convolusional-transformer MobileViTV2) untuk klasifikasi tumor otak multikelas. Model-model tersebut dilatih 

dan dievaluasi menggunakan dataset BRISC, sebuah koleksi data skala besar dan seimbang yang terdiri dari 

6.000 pindaian MRI T1-weighted dengan peningkat kontras, yang mencakup kelas glioma, meningioma, pituitari, 

dan tanpa tumor. Dengan menggunakan protokol validasi silang 5-lipat (5-fold cross-validation), strategi fine-

tuning penuh, dan teknik regularisasi yang andal, studi ini menilai model berdasarkan akurasi klasifikasi dan 

efisiensi komputasi. Hasil penelitian menunjukkan bahwa MobileViTV2, ResNet18, dan EfficientNet-B0 mencapai 

kinerja canggih (state-of-the-art) yang sebanding secara statistik, dengan rata-rata akurasi pengujian masing-

masing sebesar 98,88%, 98,72%, dan 98,72%. Sementara itu, MobileNetV3-Small, yang merupakan model paling 

efisien dari segi parameter, menunjukkan akurasi yang jauh lebih rendah, yaitu 96,94%. Sebuah temuan kunci 

mengungkapkan adanya paradoks kinerja-efisiensi, di mana model terbesar, ResNet18, justru menunjukkan 

latensi inferensi tercepat (2,83 ms). Hal ini menantang asumsi konvensional bahwa jumlah parameter yang lebih 

sedikit berbanding lurus dengan kecepatan yang lebih tinggi. Analisis komprehensif ini menggarisbawahi 

kekuatan arsitektur hibrida dan memberikan wawasan penting mengenai trade-off praktis antara kompleksitas 

model, akurasi, dan kemampuan penerapan di dunia nyata untuk sistem pendukung keputusan klinis. 
 
Keywords: Klasifikasi Tumor Otak, Convolutional-Transformer, Magnetic Resonance Imaging, BRISC dataset 
 

1. INTRODUCTION 

Brain tumors represent a significant global health challenge and are a primary cause of cancer-related 

mortality [1]. For both primary and metastatic brain tumors, an accurate and early diagnosis is paramount, as it 

directly influences the selection of therapeutic strategies, surgical planning, and ultimately, patient prognosis and 
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survival rates [2], [3]. In this clinical context, Magnetic Resonance Imaging (MRI) has been established as the 

gold-standard non-invasive diagnostic modality [2], [4]. Its exceptional soft-tissue contrast provides detailed 

anatomical visualization of brain structures, enabling the characterization of a tumor's location, size, and extent 

[4]. 

Despite its utility, the manual interpretation of MRI scans by radiologists is a complex, time-consuming 

task susceptible to human error and significant inter-observer variability [2], [5], [6]. The increasing volume of 

medical imaging data further exacerbates these challenges, creating a critical need for automated, reliable, and 

efficient diagnostic support systems [7]. 

The field of medical image analysis has been transformed by the application of deep learning, particularly 

Convolutional Neural Networks (CNNs) [4], [7], [8]. CNNs have demonstrated a remarkable ability to 

automatically learn hierarchical feature representations directly from pixel data, obviating the need for manual 

feature engineering and setting new performance benchmarks in diagnostic tasks [2], [9]. The evolution of CNN 

architectures has progressed from foundational models like VGG and ResNet to highly optimized variants such as 

EfficientNet and MobileNet, which focus on improving the trade-off between accuracy and computational 

efficiency [1], [10], [11]. 

More recently, Vision Transformers (ViTs) have emerged as a powerful alternative to CNNs [12]. By 

employing a self-attention mechanism, ViTs can model long-range dependencies and capture global context across 

an entire image, overcoming the inherent limitation of the local receptive fields in standard convolutional 

operations [13], [14]. This capability is particularly relevant for medical imaging, where diagnostic information 

may be encoded in the spatial relationships between distant regions. The current state-of-the-art is trending towards 

hybrid architectures that combine the strengths of both paradigms: leveraging CNNs for robust local feature 

extraction and ViTs for global contextual understanding [15], [16]. This hybrid approach is exemplified by models 

like MobileViTV2, which integrates these concepts into an efficient framework [17]. 

The rapid advancement of these sophisticated deep learning models is fundamentally dependent on the 

availability of large-scale, high-quality, and meticulously annotated datasets. While several public datasets have 

facilitated progress, they are not without limitations. For instance, the widely used BraTS benchmark focuses 

primarily on gliomas and often utilizes pre-processed, standardized data, which may not reflect the variability of 

real-world clinical imaging and can limit the generalizability of trained models. Other resources, such as the 

Figshare dataset, have been noted to suffer from class imbalance and a lack of diversity in patient demographics 

and imaging conditions, which can restrict model robustness [18]. 

To address these shortcomings, this study utilizes the recently introduced BRISC dataset. This modern 

benchmark was specifically curated to provide a more robust and clinically relevant platform for developing and 

evaluating neuro-oncological AI models. Its key advantages include a large scale (6,000 T1-weighted contrast-

enhanced MRI scans), a balanced distribution across four clinically significant classes (glioma, meningioma, 

pituitary, and no tumor), and high-quality annotations validated by certified radiologists. The inclusion of a "no 

tumor" class and multiple common tumor types makes it an ideal testbed for developing general-purpose 

classification models [18]. 

The primary contribution of this paper is a rigorous and systematic empirical comparison of four distinct 

deep learning architectures for brain tumor classification on the BRISC dataset. The selected models represent a 

spectrum of design philosophies: 

1. ResNet18: A classic, robust CNN architecture. 

2. EfficientNet-B0: A state-of-the-art CNN optimized for accuracy and efficiency. 

3. MobileNetV3-Small: A lightweight CNN designed for resource-constrained environments. 

4. MobileViTV2: A modern hybrid CNN-Transformer architecture. 

A crucial aspect of the methodology is the adoption of a full fine-tuning strategy, wherein all layers of the 

pre-trained models were unfrozen and trained on the target dataset. This approach was chosen to comprehensively 

evaluate the adaptability of ImageNet-derived features to the specific domain of brain MRI analysis. The scope of 

this study extends beyond mere classification accuracy to include a holistic evaluation of computational efficiency, 

encompassing parameters, FLOPs, and real-world inference latency. Furthermore, the statistical significance of 

performance differences is rigorously assessed to provide robust conclusions about the relative merits of each 

architecture. 

2. MATERIAL AND METHODS 

2.1. DATASET DESCRIPTION 

This study utilizes the BRISC 2025 dataset, a high-quality collection of expert-annotated Magnetic 

Resonance Imaging (MRI) images of brain tumors. This dataset was specifically designed to address several 

limitations found in previously available datasets, such as class imbalance and annotation inconsistencies, making 

it highly suitable for training reliable classification models [18]. 

The BRISC 2025 dataset comprises a total of 6,000 T1-weighted contrast-enhanced MRI images, curated 

from a combination of three sources: Figshare, SARTAJ, and Br35H. The images underwent a meticulous review 

and re-annotation process by certified radiologists to ensure high quality and diagnostic accuracy. For the 



Journal Application Technology Information and Management (JATIM), Vol. 6, No. 1, April 2025 

ISSN: 2722-435X 

 

26 
 

classification task, all images are categorized into four distinct classes: Glioma, Meningioma, Pituitary and No 

Tumor. Each image in the dataset is presented in one of three anatomical planes: axial, coronal, or sagittal. This 

diversity in planes is intended to ensure that the developed model is robust and not dependent on the image 

acquisition orientation [18]. 

The dataset is carefully partitioned into two separate sets: 5,000 images for training and 1,000 images for 

testing. This division ensures an objective evaluation of the model's performance. The sample distribution for each 

class across the different MRI planes is summarized in the table below. This table demonstrates that the class 

distribution is kept relatively balanced in both the training and testing sets, which is crucial for preventing bias 

during the model training process [18]. 

 
Table 1. Class Distribution Based on MRI Planes in the BRISC 2025 Dataset 

 

Class/Plane 
Train Test 

Axial Coronal Sagittal Axial Coronal Sagittal 

Glioma 347 428 372 85 81 88 

Meningioma 423 426 480 134 89 83 

Pituitary 428 496 533 116 98 86 

No Tumor 352 310 405 52 48 40 

Total Per Plane 1550 1660 1790 387 316 297 

Total 5000 1000 

 

Although the BRISC 2025 dataset also provides pixel-wise segmentation masks for each image, this study 

focuses solely on the image classification task. Therefore, the data used consists of the raw MRI images and their 

corresponding class labels, without utilizing the segmentation mask information [18]. 

 

 
Figure 1. Sample Image for Each Class and Planes 

 

Figure 1 displays representative T1-weighted contrast-enhanced MRI scans for each of the four classes in 

the BRISC dataset. The images illustrate the distinct morphological characteristics that the models must learn to 

differentiate. Glioma tumors often present with irregular borders and heterogeneous signal intensity, reflecting 

their infiltrative nature. Meningiomas typically appear as well-circumscribed, dural-based masses with 

homogenous contrast enhancement. Pituitary tumors are localized to the sella turcica and present as distinct 

masses. The "no tumor" class includes scans of healthy brain tissue, which serve as a crucial negative control for 

training robust classifiers. The visual diversity within and between classes underscores the complexity of the 

classification task [18]. 

 

2.2 MODEL ARCHITECTURES 

For this study, four pre-trained deep learning models were selected to represent diverse architectural 

paradigms. This selection aims to evaluate how different approaches—ranging from conventional CNNs to 
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efficient hybrid architectures—impact performance on the brain tumor classification task. The details of each 

model are summarized in the table below. 
 

Table 2. Comparison of the Model Architectures Used 

Model 

Architecture 

Core 

Paradigm 

Key Features & Components Primary Advantage & Use Case 

ResNet18 [19] Deep Residual 

Network 

Utilizes "shortcut connections" 

to allow gradients to flow more 

easily to deeper layers. 

Fundamental & Robust: Prevents the 

vanishing gradient problem, enabling the 

training of very deep networks. It often 

serves as a strong baseline in various 

computer vision tasks. 

EfficientNet-B0 

[20] 

Compound 

Scaling 

Introduces a balanced scaling 

method for network depth, 

width, and resolution 

simultaneously. 

Optimal Balance: Achieves state-of-the-art 

accuracy with significantly fewer parameters 

and computational resources compared to 

other models. 

MobileNetV3-

Small [21] 

Lightweight 

Mobile 

Architecture 

Built upon depthwise separable 

convolutions, inverted residual 

blocks, and squeeze-and-excite 

modules. 

Efficient & Fast: Specifically designed for 

resource-constrained devices (e.g., mobile 

phones). It offers very low computational 

cost while maintaining competitive 

performance. 

MobileViTV2 

[22] 

Hybrid CNN-

Transformer 

Combines convolutions (for 

local features) with MobileViT 

blocks that use separable self-

attention (for global features). 

Local & Global: Capable of efficiently 

learning both local and global feature 

relationships within a single lightweight 

framework, combining the strengths of 

CNNs and Vision Transformers (ViTs). 

 

2.3. EXPERIMENTAL PROTOCOL 

 

The experiments were conducted in a reproducible and systematic manner to ensure a fair comparison. 

a) Framework and Hardware: All models were implemented using the PyTorch deep learning framework 

[23]. The training and evaluation were performed in a Kaggle environment equipped with two NVIDIA 

Tesla T4 GPUs, enabling parallel training strategies. 

b) Cross-Validation: A 5-fold cross-validation scheme was employed on the 5,000 training images. This 

process involves splitting the data into five equal folds, training the model five times with each fold 

serving once as the validation set, and averaging the results. This ensures that the reported performance 

is robust and less sensitive to the particularities of a single data split. 

c) Training Strategy: A full fine-tuning approach was used for all models. The weights of each model, pre-

trained on the ImageNet dataset, were unfrozen, allowing all parameters to be updated during training. 

This strategy tests the model's capacity to adapt its learned features to the specific domain of brain MRI 

classification. 

d) Hyperparameters: The training process for all models was standardized using the hyperparameters 

specified in Table 3. 

 
Table 3. Training Hyperparameters 

 

Parameter Value  Parameter Value 

Input Image Size  2242  Scheduler Cosine Annealing [24] 

Batch Size 128 (64 per GPU)  Learning Rate  5 × 10−4 

Number of Epochs 50 + 5 warmup epoch  Weight Decay  1 × 10−4 

Optimizer AdamW [25]  K-Folds 5 

 

2.4 DATA AUGMENTATION AND REGULARIZATION 

 

To enhance model generalization and prevent overfitting, several regularization techniques were applied 

during training. 

a) Mixup [26]: This data augmentation technique generates new training samples by linearly interpolating 

between two existing samples and their corresponding labels. A new sample (𝑥̃ , 𝑦̃) is formed from two 

samples (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) as follows: 
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𝑥̃  = 𝜆 𝑥𝑖  +  (1 − 𝜆)𝑥𝑗  

 𝑦̃  = 𝜆 𝑦𝑖  +  (1 − 𝜆)𝑦𝑗 
(1) 

 

where the mixing coefficient 𝜆 is drawn from a Beta distribution, 𝜆 ∼  𝐵𝑒𝑡𝑎(𝛼, 𝛼), with 𝛼 set to 0.2. 

b) Label Smoothing [27]: This regularization technique discourages the model from making overconfident 

predictions by replacing hard one-hot labels with smoothed labels. For a given class k and a total of K 

classes, the new label 𝑦𝑘
′  is calculated from the original one-hot label 𝑦𝑘  using a smoothing parameter 𝜖: 

𝑦𝑘
′  =  𝑦𝑘(1 − 𝜖)  +

𝜖

𝐾
 (2) 

In this experiment, 𝜖 was set to 0.001 and 𝐾 was 4.  

 

c) Dropout [28]: A dropout layer with a probability of 0.2 was added to the final classifier head of each model. 

This technique randomly sets a fraction of neuron activations to zero during training, preventing complex 

co-adaptations between neurons. 

 

2.5.  EVALUATION METRICS AND STATISTICAL ANALYSIS 

 

Model performance was assessed using a combination of classification and efficiency metrics. 

a) Classification Metrics: Performance was evaluated using standard metrics: Accuracy (overall correct 

predictions), Precision (positive predictive value), Recall (sensitivity), and the macro-averaged F1-Score 

(harmonic mean of precision and recall, averaged across all classes) [29]. 

b) Efficiency Metrics: Computational cost was measured by: Total Parameters (number of trainable weights), 

Model Size (storage space in MB), FLOPs (floating-point operations, a measure of theoretical complexity), 

and Inference Time (latency in ms for a single-batch prediction on the specified hardware). 

c) Statistical Analysis: To determine if performance differences were statistically meaningful, a one-way 

Analysis of Variance (ANOVA) and a non-parametric Friedman test were first applied to the distribution 

of test accuracies from the 5-fold cross-validation. Subsequently, post-hoc pairwise comparisons were 

conducted using paired t-tests to identify significant differences between specific model pairs. A p-value 

less than 0.05 was considered statistically significant. 

 

3. RESULTS 

3.1. OVERALL CLASSIFICATION PERFORMANCE 

 

The comparative performance of the four architectures, evaluated using 5-fold cross-validation, is 

summarized in Table 3. The results indicate that three of the four models achieved exceptionally high and closely 

matched classification accuracy. 

 
Table 3: Overall Model Performance (5-Fold Cross-Validation) 

 

Model Test Accuracy Validation 

Accuracy 

Macro Precision Macro Recall Macro F1-Score 

MobileViTV2 0.9888 ± 0.0025 0.9944 ± 0.0014 0.9879 ± 0.0031 0.9904 ± 0.0023 0.9891 ± 0.0026 

ResNet18 0.9872 ± 0.0010 0.9904 ± 0.0019 0.9883 ± 0.0013 0.9886 ± 0.0010 0.9884 ± 0.0011 

EfficientNet-B0 0.9872 ± 0.0038 0.9920 ± 0.0025 0.9875 ± 0.0037 0.9880 ± 0.0035 0.9877 ± 0.0036 

MobileNetV3-

Small 

0.9694 ± 0.0053 0.9742 ± 0.0055 0.9672 ± 0.0072 0.9730 ± 0.0054 0.9698 ± 0.0061 

 

MobileViTV2 emerged as the top-performing model with a mean test accuracy of 98.88%. It was followed 

almost identically by ResNet18 and EfficientNet-B0, both achieving a mean test accuracy of 98.72%. 

MobileNetV3-Small, while still performing well, registered a noticeably lower mean test accuracy of 96.94%. The 

low standard deviations across all metrics for the top three models suggest stable and consistent performance 

across the different data folds. 

 

3.2. COMPUTATIONAL AND EFFICIENCY ANALYSIS 

 

An analysis of the computational requirements and efficiency of each model reveals significant 

architectural trade-offs, as detailed in Table 4. MobileNetV3-Small is unequivocally the most lightweight model, 

with only 1.5M parameters and a 5.94 MB footprint. In contrast, ResNet18 is the largest, with over 7 times more 

parameters and a model size 7 times greater than MobileNetV3-Small. 
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Table 4: Model Efficiency and Computational Cost 

 

Model  Total Parameters  Size (MB)  GFLOPs  Inference Time (ms) 

MobileNetV3-Small  1,521,956  5.94  0.056  5.52 

EfficientNet-B0  4,012,672  15.59  0.385  8.67 

MobileViTV2  4,390,893  16.91  1.412  9.26 

ResNet18  11,178,564  42.72  1.824  2.83 

 

However, a counter-intuitive relationship between theoretical complexity (FLOPs) and practical speed 

(Inference Time) was observed. ResNet18, despite having the highest FLOPs, recorded the fastest inference time 

at just 2.83 ms. Conversely, MobileViTV2, with fewer FLOPs than ResNet18, was the slowest at 9.26 ms. This 

suggests that factors such as architectural design and hardware-level optimization play a more significant role in 

determining real-world latency than theoretical operational counts alone. 

 

3.3. ERROR AND MISCLASSIFICATION ANALYSIS 

 

An analysis of the aggregated confusion matrices (Figure 2) from the cross-validation revealed specific 

patterns of misclassification for each model, highlighting their respective strengths and weaknesses. 

 
Figure 2. Confusion Matrices 

 

1) MobileNetV3-Small: The most frequent error was the misclassification of meningioma as pituitary tumors, 

occurring in 35 instances. This suggests difficulty in distinguishing between these two often similarly 

appearing tumor types. 

2) ResNet18: The most common error was misclassifying no-tumor scans as meningioma (18 instances). This 

may indicate that the model is sensitive to subtle anatomical variations or artifacts in the meninges that 

mimic early-stage tumors. 

3) MobileViTV2: This model also struggled most with confusing meningioma for pituitary tumors, but did 

so with the lowest frequency among all models (13 instances), indicating greater robustness in 

differentiating these classes. 
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4) EfficientNet-B0: Its primary confusion was misclassifying glioma as meningioma (21 instances), pointing 

to a potential challenge in distinguishing between the infiltrative boundaries of gliomas and the more well-

defined appearance of meningiomas. 

Overall, the top-performing models, particularly MobileViTV2, made fewer critical errors, suggesting a 

more nuanced understanding of the distinguishing features between clinically similar tumor types. 

 

3.4. STATISTICAL SIGNIFICANCE OF RESULTS 

Statistical analysis was performed to validate the observed performance differences. 

a) Overall Difference: Both the ANOVA test (𝐹(3,16) = 24.21, 𝑝 < 0.001) and the Friedman test 

(𝜒2(3) = 9.37, 𝑝 = 0.0248) confirmed that there were statistically significant differences in the mean 

test accuracies across the four models.    

b) Pairwise Differences: Post-hoc paired 𝑡-tests revealed that the performance of MobileNetV3-Small was 

significantly lower than that of ResNet18 (𝑝 = 0.004), MobileViTV2 (𝑝 = 0.006), and EfficientNet-B0 

(𝑝 = 0.009). However, no statistically significant differences were found in the pairwise comparisons 

among the top three models: ResNet18, MobileViTV2, and EfficientNet-B0 (all 𝑝 > 0.05). This indicates 

that these three models form a top tier of performance on this specific task and dataset. 

 

4. DISCUSSION 

4.1. INTERPRETATION OF FINDINGS: HYBRID VIT VS. PURE CNNS 

The results demonstrate that modern CNNs and hybrid architectures can achieve state-of-the-art 

performance in brain tumor classification. While the top three models were statistically indistinguishable in terms 

of accuracy, the slight numerical advantage of MobileViTV2 is noteworthy. Its hybrid design, which integrates 

the local feature extraction capabilities of convolutions with the global context modeling of transformers, is 

theoretically well-suited for medical imaging [15], [17]. Tumors are characterized not only by their internal texture 

and cellular structure (local features) but also by their shape, mass effect, and relationship to surrounding 

anatomical structures (global features). The self-attention mechanism in MobileViTV2 allows it to weigh the 

importance of features across the entire image, potentially enabling a more holistic understanding than purely 

convolutional approaches [13]. The model's lower number of critical meningioma → pituitary misclassifications 

further supports the notion that its global context awareness may help resolve ambiguities between tumor types 

that appear in similar locations. 

4.2. THE PERFORMANCE VS. EFFICIENCY TRADE-OFF 

This study uncovered a critical and non-linear relationship between theoretical model complexity and 

practical inference speed. The most striking finding is the performance of ResNet18, which, despite being the 

largest model by parameter count, size, and FLOPs, was the fastest in single-batch inference. This paradox can be 

attributed to the deep optimization of standard 3x3 convolutions within GPU-accelerated libraries like cuDNN 

[30]. In contrast, newer architectures like MobileNetV3 and MobileViTV2 rely on less common operations such 

as depthwise separable convolutions and attention mechanisms. While these operations reduce the theoretical 

FLOP count, they can lead to increased memory access costs or less optimized execution paths on current 

hardware, resulting in higher real-world latency [31]. This finding serves as a crucial reminder that for clinical 

deployment, theoretical efficiency metrics like FLOPs are not a substitute for empirical benchmarking on the target 

hardware [32]. ResNet18, despite its size, may represent a highly practical choice where low latency is a primary 

concern. 

4.3. IMPACT OF THE FULL FINE-TUNING STRATEGY 

The experiment's use of a full fine-tuning strategy, where all pre-trained layers were unfrozen, proved 

highly effective. The high accuracies achieved by all models, coupled with the low performance gap between 

validation and test sets (indicating good generalization), suggest that this approach is well-suited for medical 

imaging tasks when a moderately large dataset (i.e., several thousand images) is available. The success of this 

strategy was likely enabled by the strong regularization techniques employed—Mixup, Label Smoothing, and 

Dropout—which collectively prevented the models from overfitting despite their large number of trainable 

parameters. This finding is valuable from a practical standpoint, as it simplifies the training pipeline by removing 

the need for complex, staged unfreezing protocols, making state-of-the-art model training more accessible 

4.4.  CLINICAL RELEVANCE OF ERROR PATTERNS 

The misclassification patterns observed in the results are not random but reflect known diagnostic 

challenges in neuroradiology. The confusion between meningioma and pituitary tumors, seen in multiple models, 

is clinically plausible as both can present as well-circumscribed, contrast-enhancing masses at the base of the skull 
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[33]. Similarly, the confusion of no-tumor scans with meningioma by ResNet18 could stem from the model's high 

sensitivity to subtle, benign thickening of the meninges, which can mimic early-stage pathology [34]. The fact that 

the models' failure modes align with human diagnostic ambiguities suggests that they are learning clinically 

relevant radiological features. This reinforces their potential as diagnostic aids but also highlights the need for 

future work, such as incorporating multi-modal MRI sequences (e.g., T2-weighted or FLAIR) to provide 

complementary information that could help resolve these specific ambiguities [35], [36]. 

4.5. CONTEXTUALIZATION WITH EXISTING LITERATURE 

The high accuracies achieved in this study, with top models exceeding 98.7%, are consistent with and 

advance the findings of recent literature in the field. Several studies utilizing CNN architectures like ResNet and 

EfficientNet on similar multi-class brain tumor datasets have reported accuracies in the 95-99% range [4], [8], 

[37], [38]. The superior performance of the hybrid MobileViTV2 aligns with a growing body of research 

demonstrating the advantages of transformer-based models in medical imaging, which are increasingly 

outperforming traditional CNNs by effectively capturing global dependencies [13], [14]. This study therefore 

validates these broader trends on a new, large-scale, and balanced benchmark dataset. 

4.6 LIMITATIONS AND FUTURE WORK 

This study has several limitations that provide avenues for future research. First, the analysis was conducted 

on a single, albeit high-quality, dataset (BRISC). Validating the findings on external, multi-institutional datasets 

is necessary to confirm the generalizability of the models. Second, only T1-weighted contrast-enhanced MRI scans 

were used [39], [40]. Future work should explore multi-modal fusion, incorporating T2-weighted, FLAIR, and 

other sequences, which could provide complementary information to resolve diagnostic ambiguities [41]. 

Additionally, while full fine-tuning was effective, a comparative study against other training strategies, such as 

progressive unfreezing [42], could yield further insights into optimal knowledge transfer. Finally, this was a 

retrospective study; the ultimate validation of any diagnostic model requires prospective clinical trials to assess its 

real-world impact on clinical workflows and patient outcomes [43], [44]. 

5. CONCLUSION 

This study conducted a comprehensive comparative analysis of four deep learning models for multi-class 

brain tumor classification on the BRISC dataset. The findings demonstrate that the hybrid vision transformer 

architecture, MobileViTV2, and the established CNNs, ResNet18 and EfficientNet-B0, achieve statistically 

equivalent, state-of-the-art performance with test accuracies approaching 99%. While MobileNetV3-Small offers 

significant advantages in model size and parameter count, its lower accuracy makes it less suitable for this high-

stakes diagnostic task. 

The analysis revealed a crucial performance-efficiency paradox, where the model with the highest 

theoretical complexity, ResNet18, yielded the lowest practical inference latency, highlighting the importance of 

empirical hardware-specific testing over reliance on theoretical metrics like FLOPs for deployment decisions. 

Furthermore, the success of a full fine-tuning strategy, supported by robust regularization, validates it as a powerful 

and straightforward approach for adapting pre-trained models to medical imaging tasks with moderately large 

datasets. The models' error patterns were found to be clinically relevant, reinforcing their potential as diagnostic 

aids while also pinpointing areas for future improvement. Ultimately, this work validates the BRISC dataset as a 

robust benchmark and confirms that both advanced CNNs and hybrid transformer architectures are capable of 

achieving exceptional accuracy in brain tumor classification, paving the way for more reliable automated tools in 

clinical neuro-oncologyConclusion is statement referring to the purpose linked research with results and 

Discussion from research. 
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