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Abstract 

The livestock sector is a major contributor to greenhouse gas emissions, 

especially through feed production and processing. As demand for animal 

products increases, the need for sustainable alternatives becomes more 

urgent. This review explores how the circular bioeconomy (CBE) can 

reduce environmental impact by using industrial waste gases, such as 

CO₂, CO, and CH₄, as carbon sources for microbial bioconversion. The 

review discusses key microbial platforms, including autotrophic bacteria, 

methanotrophs, and hydrogen-oxidizing bacteria, for their ability to 

convert gases into biofuels and single-cell protein (SCP). These 

alternatives offer a more ecofriendly approach to conventional livestock 

feed. The review also highlights successful industrial applications, safety 

and regulatory challenges, and emerging biotechnological innovations, 

such as synthetic biology and co-culture systems. Ultimately, integrating 

the CBE into livestock systems provides a way to achieve more 

sustainable, resilient, and efficient food production. 
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1. INTRODUCTION  

Recent advances in microbial biotechnology 

enable the ‘gas-to-feed’ approach, in which 

industrial waste gases such as CO₂, CO, and CH₄ are 

biologically converted into single-cell protein and 

other feed components, transforming emissions into 

valuable nutritional inputs. The livestock sector 

significantly contributes to global greenhouse gas 

(GHG) emissions and has various environmental 

impacts, including land use, water use, and pollution 

(Molden & Khanal, 2025). Beyond contributing to 

global GHG emissions, gases such as CO₂, CO, and 

CH₄ represent untapped carbon reservoirs that can 

be valorized through microbial fermentation. 

Converting these waste gases into feed ingredients 

repositions them from pollutants to productive 

inputs within a circular carbon economy. Feed 

production and processing alone account for 45% of 

the sector's total GHG emissions. Feed production 

dominates livestock-related emissions because it 

involves intensive use of land, energy, and fertilizers 

for crop cultivation and processing. Consequently, 

decarbonizing feed supply chains provides the most 

strategic leverage point for emission reduction both 

by minimizing land-use change and by introducing 

novel feed inputs, such as microbial protein 
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synthesized from waste gases. Other sources include 

enteric methane and manure management (Makkar, 

2016). The growing demand for livestock products 

exacerbates these environmental issues, 

underscoring the importance of sustainable feed 

practices and efficient resource utilization 

(Mamphogoro et al., 2024; Place, 2024). The 

circular bioeconomy (CBE) integrates the principles 

of the circular economy with the use of biological 

resources to create sustainable, resource-efficient 

production systems (Mabee, 2022; Molden et al., 

2025). In livestock production, this involves using 

outputs from one sector as inputs for another. For 

example, agricultural by-products and food waste 

can be used as feed (Puente-Rodríguez et al., 2022). 

The CBE aims to minimize waste, optimize 

resource use, and reduce environmental impacts by 

promoting practices such as nutrient recycling, 

using alternative feed sources, and implementing 

integrated farming systems (Garrett et al., 2020; 

Wyngaarden et al., 2020). 

This review explores the potential of the 

circular bioeconomy to address sustainability 

challenges in livestock production. Specifically, this 

review examines how circular bioeconomy 

principles can be operationalized by converting 

industrial emissions (CO₂, CO, and CH₄) into 

microbial biomass for livestock feed, identifying 

technological pathways, industrial examples, and 

policy enablers that support this gas-to-feed 

transition. It will examine current practices and 

innovations, highlighting successful 

implementations of circular bioeconomy (CBE) 

principles in livestock feed and production systems 

(Parodi et al., 2022), as well as the barriers and 

opportunities. The circular bioeconomy (CBE) 

represents a systems-based approach that integrates 

biological resource cycles into a broader framework 

of environmental sustainability, economic 

resilience, and social equity. It emphasizes closing 

nutrient and energy loops across sectors through 

valorization of waste streams and renewable carbon 

flows. Globally, feed manufacturing contributes 

significantly to CO₂ emissions through fertilizer use, 

energy consumption, and land conversion. 

Simultaneously, industrial processes emit billions of 

tonnes of CO₂ annually, representing an overlooked 

carbon source that could offset feed-related 

emissions. The convergence of these two systems 

industrial emissions and livestock feed production 

presents an opportunity for integrated mitigation 

through microbial conversion technologies. It will 

identify the challenges faced by farmers and other 

stakeholders in adopting circular practices and 

potential solutions to overcome these barriers (Pink 

et al., (2025); and policy and regulatory 

frameworks, discussing the role of policies and 

regulations in facilitating the transition to a circular 

bioeconomy in the livestock sector (Domènech & 

Bahn-Walkowiak, 2019; Marku et al., 2024). By 

synthesizing insights from recent research, the 

review will provide a comprehensive understanding 

of how CBE principles can enhance the 

sustainability of livestock production, contributing 

to global food security and environmental 

conservation. Despite its holistic framework, the 

practical application of the circular bioeconomy in 

livestock remains constrained by technological and 

structural barriers. Efficient bioconversion of 

industrial gases requires advanced reactor systems, 

reliable gas capture, and integration with existing 

feed supply chains. Moreover, the lack of supportive 

policies and limited technological readiness for 

industrial-scale microbial fermentation hinder 

broader implementation. 

2. MATERIALS AND METHODS 

This review uses a systematic literature review 

(SLR) approach to summarize existing research on 

applying circular bioeconomy principles to 

sustainable livestock feed production. The PRISMA 

(Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) framework guided the review 

process to ensure methodological transparency, 

rigor, and replicability. This study adopts a 

Systematic Literature Review (SLR) approach 

following the PRISMA (Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses) 
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guidelines to ensure methodological rigor, 

transparency, and reproducibility. Scopus was 

selected as the primary database because it 

comprehensively indexes peer-reviewed scientific 

publications relevant to environmental sciences, 

biotechnology, and livestock production. 

 Scopus was used as the primary database 

because it comprehensively indexes peer-reviewed 

research across biotechnology and agricultural 

sciences. Search strings combined keywords such as 

‘circular bioeconomy,’ ‘gas fermentation,’ 

‘industrial emissions,’ ‘microbial bioconversion,’ 

‘single-cell protein,’ and ‘livestock feed,’ using 

Boolean operators (AND/OR). The search was 

limited to English-language publications from 

2003–2025. Articles were included if they reported 

microbial or biotechnological utilization of 

industrial gases for feed or bioresource production; 

purely conceptual or non-livestock studies were 

excluded. A literature search was conducted using 

combinations of keywords and Boolean operators, 

including terms such as "circular bioeconomy," 

"livestock," "microbial bioconversion," "industrial 

gases," "gas fermentation," "single-cell protein," 

"methanotrophs," and "Clostridium 

autoethanogenum." The search was limited to 

English articles published between 2003 and 2025. 

To maintain focus, the search strategy explicitly 

targeted studies addressing microbial bioconversion 

of industrial gases (CO₂, CO, CH₄) for feed or 

bioresource applications. Broader circular 

bioeconomy or livestock sustainability papers 

without microbial or gas-conversion components 

were excluded during full-text screening. This 

filtering step ensured the review concentrated on 

microbial biotechnology pathways relevant to gas-

to-feed innovations rather than general CBE 

concepts. Only articles focusing on practical or 

experimental applications of microbial or 

biotechnological innovations in livestock feed 

systems were considered to ensure relevance. 

Articles were included if they met the following 

criteria: they were published in peer-reviewed 

journals indexed in Scopus; they focused on the 

microbial conversion of industrial gases or the 

circular bioeconomy in the context of livestock 

production; and they provided empirical data, 

applied reviews, or techno-economic assessments. 

Articles were excluded if they were non-English 

publications, opinion pieces, conference 

proceedings, or unrelated to microbial feed 

production or livestock sustainability. 

The initial search yielded 312 records. After 

removing duplicates and screening the titles and 

abstracts preliminarily, 161 articles remained for 

full-text evaluation. Each article was assessed 

against the inclusion and exclusion criteria, resulting 

in a final selection of 93 relevant articles. The 

selection process was documented using a PRISMA 

flow diagram (see Appendix A). Key information 

from each selected article was extracted and entered 

into a standardized data matrix. This information 

included authorship, year of publication, microbial 

platform or pathway used, types of industrial gases 

utilized (e.g., CO₂, CO, CH₄), target products (e.g., 

single-cell protein, ethanol, 

polyhydroxyalkanoates), scale of implementation 

(laboratory, pilot, or industrial), and major findings. 

A thematic analysis was then performed to 

categorize the findings as microbial bioconversion 

strategies, gas-to-feed pathways, nutritional and 

safety evaluations of microbial protein, regulatory 

frameworks, or future technological directions. This 

structured synthesis aims to provide a 

comprehensive overview of how microbial and 

biotechnological innovations contribute to 

sustainable livestock systems within a circular 

bioeconomy framework. 
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Figure 1. PRISMA flow diagram for literature review.

3. RESULT AND FINDING 

3.1 Industrial Emissions and Their 

Environmental Impact 

Various gases are emitted from industrial 

activities, including carbon dioxide (CO₂), which is 

produced from the burning of fossil fuels in power 

plants, automobiles, and industrial processes (El-

Nemr, 2011; Kannan & James, 2009); carbon 

monoxide (CO), which is produced from the 

incomplete combustion of fossil fuels in power 

plants, vehicles, and industrial processes (Kocasoy 

& Yalin, 2004; Majstorović et al., 2020); methane 

(CH₄), released from natural gas production, coal 

mining, and agricultural activities (Aydin & 

Karakurt, 2024; Mohajan, 2011); nitrous oxide 

(N₂O), emitted from industrial processes and 

agricultural activities; and halocarbons, which are 

gases containing fluorine, chlorine, and bromine 

that are linked to carbon and are often used in 

industrial applications (El-Nemr, 2011). Industrial 

emissions significantly contribute to climate change 

by increasing the concentration of greenhouse gases 

(GHGs) in the atmosphere. Typical industrial off-

gases contain 40–80% CO, 10–30% CO₂, and trace 

CH₄, often with impurities such as NOx, SO₂, or 

heavy metals that can inhibit microbial growth. 

Gas–liquid mass transfer remains a key bottleneck 

in large-scale fermentations, with volumetric mass-

transfer coefficients (kLa) typically ranging from 

100–400 h⁻¹ depending on reactor design. 

Addressing these constraints through gas 

purification and reactor optimization is essential to 

ensure consistent SCP yields and process safety. 

Global warming occurs when GHGs, such as CO₂, 

CH₄, and N₂O, trap heat in the atmosphere, leading 

to a rise in global temperatures (Talaei et al., 2020). 

Climate impacts: increased GHGs result in more 

extreme weather events, such as storms, floods, 

droughts, and rising sea levels (Fu et al., 2021). 

Historical context: since the Industrial Revolution, 

human activities have significantly increased GHG 

emissions, primarily from fossil fuel combustion 

and deforestation (Kannadhasan & Nagarajan, 

2023). 
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Figure 2. Potential use of gas for feed production.

Using industrial gases as carbon feedstocks for 

microbes offers several benefits. Abundant and 

inexpensive gases, such as CO₂, CO, and CH₄, are 

ideal for microbial biomanufacturing (Baumschabl 

et al., 2024; Yaverino-Gutiérrez et al., 2024). 

Additionally, utilizing these gases can mitigate their 

environmental impact by converting them into 

valuable products, thus reducing greenhouse gas 

(GHG) emissions (Bae et al., 2022; Federici et al., 

2023). Biotechnological Potential: Microbes can be 

engineered to efficiently convert one-carbon (C1) 

compounds into biofuels and chemicals, supporting 

a circular carbon economy (Yao & Zhou, 2023). 

Challenges and Advances: While natural C1-

utilizing microbes have limitations, recent 

advancements in microbial engineering and 

synthetic biology are improving their efficiency and 

productivity (Neto et al., 2024). 

Using industrial gases as carbon 

feedstocks for microbes offers several 

benefits 

Table 1. Characteristics of industrial gases and their 

bioconversion potential 
Aspect Details 

Types of Gases CO₂, CO, CH₄, N₂O and 

halocarbons 

Sources Sources: fossil fuel 

combustion, industrial 

processes, agriculture, 

natural gas production, and 

coal mining 

Climate Impact Global warming, extreme 

weather events, rising sea 

levels 

Utilization 

Rationale 

Abundance, low cost, 

environmental mitigation, 

and biotechnological 

potential 

Challenges Efficiency of natural 

microbes and the need for 

advanced microbial 

engineering 
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3.2 Microbial Platforms for Gas Bioconversion 

Notable autotrophic bacteria, such as 

Clostridium autoethanogenum and Acetobacterium 

woodii, convert CO and CO₂ into valuable products 

via the Wood-Ljungdahl pathway. For instance, 

Clostridium autoethanogenum can convert CO and 

CO₂ into ethanol and other bioproducts. The 

efficiency of this process is enhanced by 

supplementing hydrogen (Davin et al., 2024). 

Methanotrophs, such as Methylococcus capsulatus 

and Methylomicrobium buryatense, can convert 

methane (CH₄) and CO₂ into biomass and other 

valuable products. Methylococcus capsulatus 

utilizes both CH₄ and CO₂, and carbonic anhydrase 

isoforms play a crucial role in its metabolism 

(Henard et al., 2021). Genetic engineering has 

improved the efficiency of these processes. For 

example, overexpressing carbonic anhydrase 

enhances the conversion of CH₄ to biomass (Lee et 

al., 2024). M. buryatense has been studied for its 

robust growth and ability to produce various 

biochemicals under different growth conditions 

(Garg et al., 2018; Gilman et al., 2015). Hydrogen-

oxidizing bacteria (HOB), such as Cupriavidus 

necator and Hydrogenobacter thermophilus, use 

hydrogen (H₂) to fix CO₂, producing valuable 

compounds, including polyhydroxyalkanoates and 

single-cell proteins (Ueda et al., 2007). These 

bacteria show promise for CO₂ capture and waste 

recovery; recent advances in metabolic engineering 

have enhanced their productivity (Lin et al., 2022; J. 

Yu, 2018). 

Figure 3. The role of microbes in SCP production 

While autotrophic bacteria such as Clostridium 

autoethanogenum or Methylococcus capsulatus are 

primarily engineered for bulk protein and biofuel 

production, algae and cyanobacteria occupy a 

complementary niche as functional feed ingredients. 

Their high pigment, lipid, and antioxidant content 

makes them valuable for enhancing feed quality and 

animal health rather than serving as primary protein 

replacements. Thus, they complement rather than 

compete with bacterial C1 platforms in the gas-to-

feed ecosystem. Algae and cyanobacteria efficiently 

convert CO₂ into biomass and biofuels through 

photosynthesis. These organisms are integral to 

sustainable biofuel production because they can fix 

CO₂ and produce high-value products (Bardhan et 

al., 2019). Genetic and metabolic engineering have 

significantly advanced the capabilities of gas-

fermenting microorganisms. For example, 

methanotrophs have been engineered to increase 

their efficiency in converting methane and their 

yield of products. Synthetic promoters and plasmids 

have been developed to enhance gene expression in 

methanotrophs such as Methylococcus capsulatus 

and Methylosinus trichosporium (Bhat et al., 2024; 

Nath et al., 2022). Furthermore, the Wood-

Ljungdahl pathway in Clostridium 

autoethanogenum has been optimized through 

metabolic engineering for improved CO₂ utilization 

(Davin et al., 2024). 

Genetic and metabolic engineering have 

significantly advanced the capabilities of 

gas-fermenting microorganisms



AMALYADI AND WIDIASTUTI  110 

Table 2. Microbial strategies for gas-to-product conversion 

Microbial Platform Key Organisms Key Processes Applications 

Autotrophic Bacteria Clostridium 

autoethanogenum and 

Acetobacterium 

woodii 

Conversion of CO 

and CO₂ via the 

Wood-Ljungdahl 

pathway 

Ethanol, 

bioproducts (Davin et 

al., 2024) 

Methanotrophs Methylococcus 

capsulatus and 

Methylomicrobium 

buryatense 

CH₄ and CO₂ 

conversion 

Biomass, 

biochemicals (Garg et 

al., 2018; Gilman et al., 

2015; Henard et al., 

2021; Lee et al., 2024) 

Hydrogen-oxidizing 

bacteria 

Cupriavidus necator 

and Hydrogenobacter 

thermophilus 

H₂ oxidation and CO₂ 

fixation 

Polyhydroxyalkanoates, 

single-cell proteins (Lin 

et al., 2022; Ueda et al., 

2007; J. Yu, 2018) 

Algae and 

cyanobacteria 

Various species CO₂ fixation via 

photosynthesis 

Biomass, 

biofuels (Bardhan et al., 

2019) 

Genetic and 

metabolic engineering 

Various gas-

fermenting 

microorganisms 

Enhanced gene 

expression and 

metabolic pathways 

Improved conversion 

efficiency, product 

yield (Bhat et al., 2024; 

Nath et al., 2022) 

3.3 Gas-to-Feed Conversion Pathways and Feed 

Products 

Single cell protein (SCP) production involves 

cultivating microorganisms, such as algae, bacteria, 

fungi, and yeast, to produce protein-rich biomass. 

The mechanisms of SCP production are influenced 

by the choice of microorganisms and substrates, as 

well as by the optimization of fermentation 

conditions. For example, photosynthetic bacteria 

can use volatile fatty acids (VFAs) from food waste 

fermentation liquids to increase SCP production via 

metabolic pathways such as the tricarboxylic acid 

cycle (Zhu et al., 2022). SCP production can also be 

optimized by adjusting the sources of carbon and 

nitrogen, pH, temperature, and other cultivation 

conditions (Koukoumaki et al., 2024; Raita et al., 

2022). SCP is rich in protein and contains essential 

amino acids, lipids, vitamins, and minerals. For 

instance, SCP derived from various microorganisms 

contains essential amino acids, such as lysine, 

methionine, and threonine, as well as lipids and 

vitamins (Sharif et al., 2021). The fermentation 

process can improve the nutritional value of SCP by 

increasing its essential nutrient content (Salazar-

López et al., 2022; Sharif et al., 2021). Furthermore, 

SCP production from food waste results in biomass 

rich in amino acids, vitamins, and minerals, making 

it a valuable feed component (Salazar-López et al., 

2022). 

The fermentation process can improve the 

nutritional value of SCP by increasing its 

essential nutrient content
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Figure 4. Conceptual diagram: gas bioconversion to feed.

The nutritional profile of SCP makes it a 

suitable alternative to traditional protein sources, 

such as fishmeal and soybean meal, in livestock 

feed. It contains high levels of protein, essential 

amino acids, carbohydrates, nucleic acids, fats, 

minerals, and vitamins (Koukoumaki et al., 2024; 

Sharif et al., 2021). Studies have shown that SCP 

can replace traditional protein sources in animal 

diets without negative effects, offering a sustainable, 

nutritious feed option (Bratosin et al., 2021). 

Including SCP in livestock feed enhances its 

nutritional value and supports animal growth and 

health. While SCP offers numerous nutritional 

benefits, its safety and palatability are critical for its 

acceptance in animal feed. However, SCP may 

contain toxic substances, such as nucleic acids, 

mycotoxins, and bacterial toxins, necessitating 

further purification steps to ensure its safety 

(Salazar-López et al., 2022). Additionally, the 

palatability of SCP-enriched feed must be evaluated 

to ensure its acceptability to animals. Studies have 

shown that including SCP in animal diets does not 

adversely affect feed intake or animal performance 

(Bratosin et al., 2021; Sharif et al., 2021). For 

example, SCP-enriched bread was found to be 

acceptable up to a certain concentration, suggesting 

its potential use in animal feed (Khan et al., 2022). 

the palatability of SCP-enriched feed must 

be evaluated to ensure its acceptability to 

animals. Studies have shown that including 

SCP in animal diets does not adversely 

affect feed intake or animal performance 

3.5 Industrial Applications and Case Studies 

LanzaTech has developed an improved strain 

of Clostridium autoethanogenum that can convert 

industrial waste gases, primarily CO and CO₂, into 

valuable products, such as ethanol and 2,3-

butanediol, via gas fermentation (Chen et al., 2018). 

This process utilizes the bacteria's acetogenic 

capabilities to fix carbon and produce biofuels and 

biochemicals, promoting sustainable industrial 

practices (Allaart et al., 2023; L. Zhang et al., 2020). 

LanzaTech: Commercial scale; utilizes CO-rich 

steel off-gas (≈60–70% CO); reported carbon 

conversion efficiency up to 90% in continuous gas 

fermentation. Deep Branch: Pilot scale; uses syngas 

(CO₂:H₂ ≈1:3) in hydrogen-oxidizing bacterial 

systems; yields ~60% crude protein (dry basis) in 

the final single-cell biomass. UniBio: 

Demonstration/commercial hybrid scale; operates 

on CH₄-dominant natural gas (>95% CH₄); achieves 

biomass productivity of 1.5–2.0 g L⁻¹ h⁻¹ under 

optimized conditions. 

LanzaTech has developed an improved 

strain of Clostridium autoethanogenum 

that can convert industrial waste gases, 

primarily CO and CO₂, into valuable 

products, such as ethanol and 2,3-

butanediol, via gas fermentation 

The technology has been commercialized, and 

operational plants use CO-rich off-gas from the steel 

industry (Gunes, 2021). Deep Branch 

Biotechnology focuses on converting CO₂ into 

protein using hydrogen-oxidizing bacteria. This 

process uses hydrogenotrophic bacteria that use 

hydrogen as an energy source and CO₂ as a carbon 

source to produce single-cell protein (SCP) (Jain et 

al., 2023; Jiang et al., 2022). While the production 

of SCP from syngas (a mixture of CO₂ and H₂) has 

been demonstrated to be feasible, the presence of 

CO can inhibit growth. This indicates the need to 

optimize gas compositions (Jiang et al., 2022). 

UniBio uses methanotrophic bacteria to convert 

methane into microbial protein. Methanotrophs, 
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such as Methylococcus capsulatus, can use methane 

as a carbon and energy source to produce biomass, 

which can serve as a protein source (Engel et al., 

2025). This approach provides an alternative protein 

source and helps mitigate methane emissions, 

contributing to environmental sustainability (Gao et 

al., 2024). 

Deep Branch Biotechnology focuses on 

converting CO₂ into protein using 

hydrogen-oxidizing bacteria. This process 

uses hydrogenotrophic bacteria that use 

hydrogen as an energy source and CO₂ as 

a carbon source to produce single-cell 

protein (SCP) 

The economic viability of these bioconversion 

processes varies. For example, LanzaTech's gas 

fermentation process reduces production expenses 

and greenhouse gas emissions, making it 

economically attractive (Gao et al., 2024; Günes, 

2021). Similarly, using hydrogen-oxidizing bacteria 

to produce SCP is promising but requires further 

innovation to become cost-effective (Jain et al., 

2023). The scalability of these technologies is a 

critical factor. LanzaTech's process has been 

successfully scaled to commercial levels, 

demonstrating its feasibility. However, scaling 

hydrogen-oxidizing bacteria for SCP production 

and methanotrophic processes remains challenging, 

particularly in optimizing gas compositions and 

reactor designs (Engel et al., 2025; Jiang et al., 

2022). Techno-economic assessments emphasize 

the importance of optimizing operational conditions 

to enhance productivity and reduce costs. For 

instance, integrating biofilm reactors into syngas 

fermentation can enhance mass transfer rates and 

process stability, both of which are essential for 

commercial scalability (Gunes, 2021). Furthermore, 

the economic feasibility of producing microbial 

protein from methane and hydrogen hinges on the 

market value of the protein and the associated costs 

of gas purification and reactor operation (Verbeeck 

et al., 2021).

Table 3. Commercial applications of microbial gas fermentation technologies 

Company Process Description Key Microorganism Key Considerations 

LanzaTech CO to ethanol and 

biochemicals via gas 

fermentation 

Clostridium 

autoethanogenum 

Commercially viable, 

reduces GHG 

emissions, 

scalable (Chen et al., 

2018; Gunes, 2021) 

Deep Branch Conversion of CO to 

ethanol and 

biochemicals via gas 

fermentation 

-CO₂ to protein via 

hydrogen-oxidizing 

bacteria 

Hydrogenotrophic 

bacteria 

Requires optimization 

for cost-efficiency, 

promising but needs 

further 

innovation (Jain et al., 

2023; Jiang et al., 

2022) 

UniBio Methane to microbial 

protein using 

methanotrophs 

Methylococcus 

capsulatus 

Mitigates methane 

emissions, scalable 

with 

optimization (Engel et 

al., 2025; Gao et al., 

2024) 
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3.5 Safety, Regulation, and Public Acceptance 

Ensuring the safety of feed is crucial for 

ensuring the safety of food of animal origin. Feed 

risk management involves addressing biological, 

chemical, and physical hazards that can affect 

human and animal health and welfare (Bouxin, 

2023). Risk assessment models, including 

systematic reviews and meta-analyses, are used to 

evaluate these risks. However, refining these models 

for systematic reviews can be challenging (Aiassa et 

al., 2015). The Codex Alimentarius has developed 

guidelines for assessing the risk of feed safety, 

which are implemented through Hazard Analysis 

and Critical Control Points (HACCP)-based Feed 

Safety Assurance Schemes (Gorris & Yoe, 2014). 

The EU's food safety regulations are based on a risk 

analysis framework, and the European Food Safety 

Authority (EFSA) provides independent scientific 

advice (Smith, 2024). The EU has stringent food 

safety regulations, including the General Food Law 

(Regulation 178/2002/EC), which ensures high 

standards (Mandato et al., 2018). Additionally, the 

EU emphasizes separating risk assessment and risk 

management to maintain transparency and 

independence (Holm & Halkier, 2009; Silano, 

2005). 

 
Figure 5. One health/sustainability 

The United States' regulatory framework 

includes the 2011 Food Safety Modernization Act 

(FSMA), which focuses on preventing food safety 

issues rather than responding to them. The FSMA 

requires comprehensive, science-based preventive 

controls throughout the food supply chain (Gordon 

et al., 2020). In Asia, food safety regulations are 

influenced by the WTO's Sanitary and 

Phytosanitary (SPS) and Technical Barriers to 

Trade (TBT) agreements. ASEAN and SAARC 

countries are working to harmonize their food 

legislation to facilitate trade and ensure food safety 

(Hoejskov, 2017). Consumer perceptions of food 

safety significantly influence purchasing decisions 

and willingness to pay for safer foods. These 

perceptions are shaped by factors such as trust in 

food safety information, personal experiences, and 

demographic characteristics (Sharma et al., 2012; 

Tonsor et al., 2009; H. Yu et al., 2017). In 

developing regions such as the MENA, consumer 

knowledge and awareness are crucial for shaping 

food safety practices and influencing market 

readiness (Raad & Bou-Mitri, 2024). Effective risk 

communication and transparency in the food supply 

chain are essential for building consumer 

confidence (De Jonge et al., 2004; Martinez, 2010). 

Ethical considerations in food safety include 

animal treatment, genetically modified organisms, 

and the precautionary principle (Millstone, 2012; 

Veflen-Olsen & Motarjemi, 2014). As sustainability 

concerns grow, the focus is on reducing food waste, 

ensuring resource-efficient food production, and 

addressing the environmental impact of food 

systems (Guillier et al., 2016). Integrating ethical 

evaluations into sustainability frameworks can 

address these concerns and promote a holistic 

approach to food safety and sustainability (Rollin, 

2006; Vinnari et al., 2017). 

3.6 Future Directions 

Synthetic biology has advanced strain 

improvement significantly by developing tools for 

mutagenesis, screening, and creating novel genetic 

circuits. These innovations allow for high-

throughput screening and selection, resulting in 

more efficient phenotypic engineering (Yang et al., 

2019). Modern genetic technologies, such as 

recombinant DNA technology, further enhance 

strain improvement by optimizing metabolic 

pathways and increasing product yields (Konar & 

Datta, 2022). Integrating omics approaches, such as 

transcriptomics and proteomics, with synthetic 

biology tools has improved the prediction of genes 
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responsible for metabolite overproduction 

(Sanghavi et al., 2020). Modular co-culture 

engineering, which uses multiple microbial strains 

to divide biosynthetic tasks, has emerged as a 

promising bioproduction performance 

improvement strategy. This strategy reduces the 

metabolic burden on individual strains and enhances 

production efficiency (Pang et al., 2022; Zhao et al., 

2023). Co-culture systems have been successfully 

applied in various fields, including wastewater 

treatment, soil remediation, and the production of 

high-value products (Rosero-Chasoy et al., 2021; L. 

Zhang et al., 2020). Future research should focus on 

optimizing population dynamics and maintaining 

robust flux routes to realize the full potential of co-

culture engineering (Jones & Wang, 2018; H. Zhang 

& Wang, 2016). 

Producing microbial protein (MP) using 

renewable energy sources, such as electrolytic 

hydrogen and oxygen, offers a sustainable 

alternative to traditional protein sources. Power-to-

Protein and electromicrobial production 

technologies can convert CO₂ and renewable 

electricity into high-value proteins with minimal 

environmental impact (Schmitz et al., 2024; Wise et 

al., 2022). These methods can significantly reduce 

reliance on arable land and water resources, making 

protein production more efficient and 

environmentally friendly (Fasihi et al., 2025; 

Sillman et al., 2019). Integrating renewable energy 

with microbial electrosynthesis also shows promise 

for producing commodity chemicals and biofuels 

(Altin & Akay, 2024; Rabaey et al., 2010). 

Successful adoption of alternative protein sources, 

such as microbial proteins, requires comprehensive 

socioeconomic and policy-driven models. These 

models must address environmental, economic, and 

social aspects of protein production to ensure 

balanced outcomes (Søndergaard et al., 2023). 

Public policies should support the development of 

sustainable protein sources by promoting research, 

providing incentives, and ensuring regulatory 

alignment (Hundscheid et al., 2024). Furthermore, 

overcoming public acceptance and regulatory 

challenges is essential for the commercialization of 

microbial proteins (Matassa et al., 2023). 

4. CONCLUSION 

Industrial waste gases such as CO₂, CO, and 

CH₄ represent viable carbon inputs for microbial 

bioconversion into single-cell protein and other feed 

ingredients. The gas-to-feed framework links 

emission mitigation with sustainable feed supply, 

offering dual environmental and nutritional gains. 

Successful implementation depends on advancing 

bioreactor efficiency, lowering production costs, 

and ensuring supportive policy and regulatory 

conditions for safe adoption. Strengthening these 

enabling environments will accelerate the 

integration of gas-based microbial feed systems 

within a circular bioeconomy, advancing both 

livestock sustainability and climate resilience. The 

livestock sector is under increasing pressure to 

reduce its environmental footprint, especially 

regarding greenhouse gas emissions associated with 

feed production. The circular bioeconomy offers a 

promising solution: transforming industrial waste 

gases, such as CO₂, CO, and CH₄, into valuable 

products through microbial bioconversion. 

Microorganisms such as Clostridium 

autoethanogenum, methanotrophs, and hydrogen-

oxidizing bacteria have been engineered to produce 

biofuels and single-cell protein (SCP), providing 

sustainable alternatives to traditional feed sources. 

Companies such as LanzaTech, Deep Branch, and 

UniBio are commercializing gas fermentation 

technologies, though challenges in cost, scalability, 

and regulatory compliance remain. SCP is a 

nutrient-rich, low-impact feed option; however, 

safety, public acceptance, and regulatory 

frameworks are crucial for its adoption. Future 

directions include synthetic biology, co-culture 

systems, and integrating renewable energy to 

efficiently produce protein. With the right policies 

and innovations, circular bioeconomy practices 

could enhance the sustainability of livestock and 

contribute to global food and environmental 

security. 
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